Francis Rouessac - Chemical Analysis

Здесь есть возможность читать онлайн «Francis Rouessac - Chemical Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Chemical Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Chemical Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The new edition of the popular introductory analytical chemistry textbook, providing students with a solid foundation in all the major instrumental analysis techniques currently in use  The third edition of 
 provides an up-to-date overview of the common methods used for qualitative, quantitative, and structural chemical analysis. Assuming no background knowledge in the subject, this student-friendly textbook covers the fundamental principles and practical aspects of more than 20 separation and spectroscopic methods, as well as other important techniques such as elemental analysis, electrochemistry and isotopic labelling methods. 
Avoiding technical complexity and theoretical depth, clear and accessible chapters explain the basic concepts of each method and its corresponding instrumental techniques—supported by explanatory diagrams, illustrations, and photographs of commercial instruments. The new edition includes revised coverage of recent developments in supercritical fluid chromatography, capillary electrophoresis, miniaturized sensors, automatic analyzers, digitization and computing power, and more. Offering a well-balanced introduction to a wide range of analytical and instrumentation techniques, this textbook: 
Provides a detailed overview of analysis methods used in the chemical and agri-food industries, medical analysis laboratories, and environmental sciences Covers various separation methods including chromatography, electrophoresis and electrochromatography Describes UV and infrared spectroscopy, fluorimetry and chemiluminescence, x-ray fluorescence, nuclear magnetic resonance and other common spectrometric methods such atomic or flame emission, atomic absorption and mass spectrometry Includes concise overview chapters on the general aspects of chromatography, sample preparation strategies, and basic statistical parameters Features examples, end-of-chapter problems with solutions, and a companion website featuring PowerPoint slides for instructors 
, is the perfect textbook for undergraduates taking introductory courses in instrumental analytical chemistry, students in chemistry, pharmacy, biochemistry, and environmental science programs looking for information on the techniques and instruments available, and industry technicians working with problems of chemical analysis. 
Review of Second Edition “An essential introduction to a wide range of analytical and instrumentation techniques that have been developed and improved in recent years.” 

Chemical Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Chemical Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

7 The best‐known method for estimating the hold‐up time, tM, consists of measuring the retention time of a compound not retained on the column. Described here is another method for calculating the hold‐up time, which involves the relationship used in establishing retention factors. Knowing that for a homologous series of organic compounds if the column temperature is constant, we can write: (where tR represents the total retention time of a compound having n atoms of carbon, while a and b are constants that depend upon the type of solute and the stationary phase chosen).Recall the chromatographic parameters for which it is essential to know the hold‐up time tM. Which compound is used in general to determine tM?Calculate tM from the following experiment, employing the method above: a mixture of linear alkanes, possessing six, seven and eight atoms of carbon, is injected into the chromatograph. The retention times for these compounds are respectively, 271 s, 311 s, and 399 s, at a constant temperature of 80°C (column length 25 m, ID = 0.2 mm, df = 0.2 μm and a polysiloxane‐based stationary phase).If the Kovats index for pyridine on squalane is 695, what is the McReynolds constant of this compound on the column in question, if it is known that under the conditions of the experiment, its retention time is 346 s?

8 In a GC experiment, a mixture of n‐alkanes (up to n carbon atoms, where n represents a variable number) and 1‐butanol (CH3CH2CH2CH2OH) is injected onto a column maintained at a constant temperature and whose stationary phase is of the dimethylpolysiloxane type. The equation of the Kovats straight line derived from the chromatogram is: (where is expressed in seconds).The adjusted retention time of butanol is 168 s. If it is known that the retention index for butanol on a squalane column is 590 s, then deduce its corresponding McReynolds constant on this column.

9 We study a chromatogram obtained under the following conditions: Column: DB‐Wax, L= 30 m; ID = 0.321 mm; df = 0.25 μm; oven T = 210°C; mobile phase: H2, u = 50 cm/s; volume injected 0.2 μl; detector: FID, T = 220°C.The chromatogram has three peaks with the following characteristics:peak 1: tR1 = 1.01 min.; δ = 0.151 min.peak 2: tR2 = 1.95 min.; δ = 0.0277 min.peak 3: tR3 = 2.01 min.; δ = 0.0284 min.Calculate the dead time of the column. What can we conclude from this?From this, deduce the mobile phase flow rate in ml/min.Calculate the column phase ratio.Calculate the HETP (H) for peak No.2.Calculate retention factors k for peaks 2 and 3.From this, deduce the distribution coefficients K of the two corresponding compounds.Calculate the selectivity factor α between compounds 2 and 3.Calculate the resolution between these two peaks. Is it enough? What could be a solution to improve the resolution?Kovats retention indexes for octane, toluene, and methyl pentanoate on this same column are respectively 800, 850, and 985. Classify these three solutes by increasing retention times on this stationary phase.What is the polarity of this stationary phase? Justify your answer.

SOLUTIONS

1 We consider that volume V, leaving the column every second, is equal to the internal volume of the column over length ū. The section of the column is πID2/4 and thus V = ūπID2/4. Flow rate D expressed in ml/min (if ū and ID are in cm) is then D = 60V. If we choose to express ID in mm, we write D = 60ūπ(0.1)2 ID 2/4, or D = 0.47ūID 2.

2 The thermodynamic study of a chemical equilibrium leads to the formula: or or If we assume that enthalpy and entropy variations are constant in the temperature range in question and if we switch to log, we can write log k = ‐ A + B/T if we assume the entropy variation < 0 (loss of disorder when the solute is fixed on the stationary phase) and the enthalpy variation < 0 (exothermic reaction).Coelution => k1 = k2, hence log k1 = log k2 and thus T1 = 421 K or t = 148°CFor T < T1 , k2 > k1, therefore 2 elutes after 1.If α = 2, this means that k2 / k1 = 2, or log k2 ‐ log k1 = log 2, and thus T = 343 K.T = 423 K thus k1 = 0.163 and k2 = 0.161; K1 = 40.73 and K2 = 40.16.

3 The cancelation of the first derivative of H = f(u) enables us to find u corresponding to Hmin, thus u = 36.9 mm/s; Hmin = 0.295 mm.Nmax = L/Hmin = 40,674 plates.We are looking for the value of u that gives N= 0.95Nmax or N =38,641 theoretical plates, thus H= 0.310 mm; u = 50.2 mm/s or u = 27.3 mm/s.

4 The order of elution follows that of the increasing boiling points. The alkenes, which are more polar than the corresponding alkanes, are less retained, which is expected from a nonpolar column.α = k2/k: α = 1.12 (at –35°C), α = 1.11 (at 25°C) and α = 1.09 (at 40°C).Since the column is the same, the retention time decreases following the reduction in the partition factor K = CS/CM with temperature.N = 138,493 theoretical plates.Hmin theo = 0.113 mm.

5 L (m)a = √LtR (min)tR/LRR/a153.873.70.252.050.53305.487.50.252.910.53607.7515.30.254.150.53tR is proportional to length.R is proportional to .δ proportional to and N is proportional to L.δ = 0.0568 min, N60 = 148,166 plates.N30 = 74,083 plates and N15 = 37,041 plates.

6 tM = L/u = 750 s = 12.5 min. For methane, k = 0, therefore K = 0 and cannot be calculated.The higher K is, the more solute is retained and the larger the absolute value of ∆ is. Therefore, peak 10 → 2,4 dimethyl pentane, 11 → benzene, 12 → 2‐methylhexane, 13 → 2,3 dimethyl pentane and 14 → 3‐methyl hexane.N = 5.54 (tR/δ)2 = 133,126 plates.d.β = ID/4df = 250. , K = k ∙ β = 853. These are very close values.

7 Neff , k, α; GC: methane.The experiment described helps us write three equations for three unknowns, tM, a, and b: (1) log(271 – tM) = 6a + b; (2) log(311 ‐ tM) = 7a + b; (3) log (399 ‐ tM) = 8a + b, thus tM = 237.7 s.Ik = 749. The McReynolds constant for pyridine on this stationary phase is 54.

8 The Kovats index of butanol is thus 645. Its McReynolds constant is: 645 – 590 = 55.

9 tM = L/u = 3,000/50 = 60 s, i.e. 1 minute. Peak No.1 probably corresponds to the solvent peak.D = VM/tM = π ∙ L ∙ (ID)2/4 tM = 40.46 mm3∙s−1, i.e. 2.4 ml/min.β = (ID)/4df = 321/(4 x 0.25) = 321.HETP for peak No.2: H = L/N with N = 5.54tR 2 /δ 2 = 27,555 plates => H = 1.09 mm.k = (tR ‐ tM)/tM k2 = 0.93 and k3 = 0.99.K = k ∙ β, thus K2 = 0.93 × 321 = 298.5; K3 = 0.99 × 321 = 317.8.α2‐3 = k3 /k2 = 1.06.R2‐3 = 1.18(tR3 – tR2)/(δ2 + δ3) = 1.2. The resolution between two peaks for a good separation must be at least 1.5. The two peaks are therefore not well separated. To improve this separation, retention times must be increased by reducing either the carrier gas flow rate or the oven temperature.The higher the Kovats index is, the longer the retention time. Therefore, tR values are in the following order: octane < toluene < methyl pentanoate.These retention times are in the order of growing polarity of the analytes; therefore, this is a polar column.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Chemical Analysis»

Представляем Вашему вниманию похожие книги на «Chemical Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Chemical Analysis»

Обсуждение, отзывы о книге «Chemical Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x