1.3. La didáctica de la matemática como arte
De lo que sabemos a partir de los documentos disponibles, podemos decir que Wittgenstein se dedicó a la enseñanza con una intensidad desconocida y con el sentido de un deber absoluto. No perdonó ni siquiera a sí mismo; y fue severo con sus estudiantes. (…) Vivió pobre con los pobres; los respetó; hizo de tal manera que sus muchachos llegasen a pensar por sí mismos; les dio lo que tenía: su saber, su abnegación, y su canasta de naranjas.
Dario Antiseri,
Introducción a la Edición italiana de: Ludwig Wittgenstein, Dizionario per le scuole elementari.
La didáctica de la matemática como arte produjo, como veremos, resultados interesantes. El objeto del trabajo de quien eligió esta forma de didáctica es esencialmente el siguiente: la enseñanza de la matemática; y el objetivo: crear situaciones (bajo forma de clases, actividades, objetos, ambientes, juegos...) para una mejor enseñanza de la matemática. La suposición más o menos explícita parecía ser la siguiente: si mejora la enseñanza, mejorará también el aprendizaje, y la validez de dicha suposición se daba por descontada. El peso “artístico” de la actividad de enseñanza, por lo tanto, pesa completamente en los hombros del maestro. Pero en el fondo de esta elección se halla la convicción que la atracción ejercida sobre la atención y sobre la motivación del estudiante son las características esenciales para que éste último aprenda. Eso ¿corresponde a la verdad o se trata de una ilusión, un poco ingenua? A este propósito escribe Moreno Armella (1999): “La enseñanza, como simple proceso de instrucción, agravada por hipótesis sobre la capacidad del estudiante de absorber lo que se dice “bien”, no es una concepción: es una ilusión”.
Nótese la acentuación del “bien”: dirigir todo hacia la enseñanza, independientemente de que se le conciba como resultado de una reflexión artística, no ofrece garantías en el plano de los aprendizajes. Esta es la opinión compartida hoy en día, por parte de los estudiosos de didáctica. Sin embargo, en el pasado, más de un autor ha sostenido que enseñar es un arte, fruto de dotes personales que no se pueden ni aprender ni transmitir, con la conclusión que la investigación didáctica no sirve. Se trata de una concepción perniciosa que ciertamente no abre el camino a reflexiones interesantes y que por el contrario cancela toda esperanza de mejorar los aprendizajes por medio de estudios específicos, constituyendo una involución que no se puede evitar. Afortunadamente los indudables éxitos obtenidos por la investigación contemporánea han mostrado que se trata de una posición ampliamente superada sobre la cual no vale la pena perder más tiempo.
Como es normal, es necesario hacer algunas distinciones para no caer en equivocaciones: lo afirmado líneas arriba no significa que no existan docentes que muestran indudables dotes naturales en la comunicación y en el atraer la atención de los estudiantes (¡cada uno de nosotros tiene, afortunadamente, memoria de su vida escolar!). Lo que se quiere decir es que
• la eficacia de los aprendizajes no es exclusiva sólo de estos “artistas de la didáctica” aunque si, obviamente, partiendo de una base de atención e interés, es fácil que crezca la motivación y por lo tanto la volición;
• no se da por descontado que un maestro perfecto obtenga, sólo por este motivo, el resultado deseado en el plano de la calidad del aprendizaje por parte de sus propios estudiantes.
Regresemos a los resultados de la didáctica dirigida exclusivamente a la enseñanza; dije líneas arriba que ella obtuvo, en las últimas décadas, resultados interesantes.
¿Cómo no reconocer, por ejemplo, los obtenidos con la matemática viviente de Zoltan P. Dienes (1972) que tanto éxito tuvo en las décadas pasadas, en todo el mundo? El estudiante vive la matemática, no se limita a aprenderla: el maestro crea para él un ambiente favorable, adecuado, perfectamente estructurado; y actividades, por ejemplo juegos lógicos, juegos de movimiento, incluso bailes, cuya estructura es matemática. Los famosos “bloques lógicos” dieron la vuelta al mundo y muchos maestros los consideraron incluso como prototipo y sinónimo de lógica; se trata de objetos predispuestos, confeccionados previamente para efectuar activamente ejercicios de lógica, de diferentes tipos; por ejemplo juegos en los cuales se evidenciaba una parte proposicional y una parte predicativa, operaciones sobre conectivos y sobre cuantificadores, operaciones en una versión ingenua de la teoría de conjuntos elemental, etcétera. El maestro preordenaba la actividad, el estudiante encontraba placer en hacerla porque podía manipular objetos, dialogar en modo activo con el maestro y con sus compañeros, sentirse en el centro de la atención, un protagonista.
En esta misma categoría pondría el muy famoso trabajo de Emma Castelnuovo, a quien dediqué los trabajos de un Congreso nacional en noviembre de 1990 sobre la didáctica de la matemática (D’Amore, 1990). En aquella ocasión, llamándola por primera al palco de los oradores, declaré que Emma había sido ciertamente para todos los investigadores italianos en didáctica de la matemática una fuente de inspiración. Y pienso en verdad que es así. Entre las tantas maravillas que Emma ha regalado a la escuela y a la didáctica, recuerdo aquí sólo una de las más famosas, extraordinariamente precisa en su simplicidad y genialidad: el paralelogramo articulado con el cual se estudian muchas propiedades, entre otras algunas que ligan isoperimetría y equiextensión, o ciertas transformaciones geométricas, o rectángulos y paralelogramos. Emma, desde hace décadas activa, tiene miles de seguidores, grupos que llevan su nombre casi en todo el mundo, escuelas intituladas a ella. Algunas de sus intuiciones son verdaderamente geniales y son por tanto matemáticas como artísticas.
A propósito de ambientes artificiales creados a medida para ciertos aprendizajes específicos, ¿cómo no recordar los que se inspiran en Maria Montessori [1870-1952]? He tenido forma de dialogar con maestros que se inspiran en las ideas de este grande personaje y de admirar su trabajo; aseguran que los niños se hallan contentos con estas experiencias tan concretas, tan fascinantes, de exploración; y que los aprendizajes que poco a poco se realizan son estables y profundos, para nada epidérmicos.15
1.4. Dos modos diferentes de entender la didáctica de la matemática: didáctica A y didáctica B
Alguna vez de niños atravesábamos el bosque hasta su viñedo: fingíamos robar uvas e higos, él fingía enojarse y nos amenazaba, imagínense, con el libro que estaba leyendo a la sombra del higo. Terminada la broma, nos sentábamos en la tierra alrededor de su sillón de bejuco; y su esposa, ánima dulce también ella, nos llevaba el pan para comer con higos. Él creía de divertirnos, en realidad era él quien se divertía con juegos matemáticos; nosotros fingíamos de interesarnos para darle gusto.
Giulio Carlo Argan, Presentación a: Giuseppe Peano, Giochi di aritmetica e problemi interessanti.
Antes de proseguir con otros ejemplos significativos, quisiera intentar una descripción general en primera aproximación, por ahora más bien banal, de lo que se entiende hoy acerca de la investigación en didáctica de la matemática16.
Se podría hipotizar un doble modo de ver a la didáctica de la matemática:
A: como divulgación de las ideas, fijando por lo tanto la atención en la fase de la enseñanza (A aquí esta por Arte);
B: como investigación empírica, fijando la atención en la fase del aprendizaje (algo que más adelante definiré mejor y que podríamos llamar: epistemología del aprendizaje de la matemática).
Ahora, todas las experiencias vistas hasta este punto y brevemente consideradas en el párrafo precedente, son pertinentes a la tipología A, en cuanto que el esfuerzo del estudioso e investigador está totalmente dirigido a transformar un discurso especializado (y por lo tanto complejo dado que hace uso de un lenguaje técnico no natural) en uno comprensible y más adecuado a la naturaleza del estudiante. Quien se ubica en la tipología A es sensible al estudiante, lo pone al centro de su atención, pero su acción didáctica no está en el estudiante sino en el argumento en juego.
Читать дальше