En tiempos mucho más recientes, dados los rápidos y fantásticos progresos de la Didáctica de la Matemática, con Martha Isabel Fandiño Pinilla y Silvia Sbaragli hemos concebido un nuevo megaproyecto dirigido a profesores de la escuela primaria, llevado a cabo por la casa editorial Pitagora de Bolonia, Matemática en la escuela primaria, recorridos para aprender (D’Amore, Fandiño Pinilla, Sbaragli, 2011). En la bibliografía se retoma la lista completa de libros de diversos autores.
1El Proyecto Ma.S.E. constaba de 12 volúmenes y tuvo un éxito fulgurante en los años 90 en Italia, entre los profesores de la escuela primaria; el éxito fue tal, que el proyecto terminó con una amplia voz en la Enciclopedia Pedagógica (2002) dirigida por Mauro Laeng, Brescia: La Scuola Editrice, páginas 1228-1230.
2Unos años después decidí de graduarme también en filosofía ya que me di cuenta de necesitar bases filosóficas para mi trabajo de investigador en didáctica de la matemática. La idea era de incluir lo que necesita de pedagogía, filosofía y psicología al interior de la didáctica de la matemática, así que esta, al final sea autónoma y completa. Como hoy es.
3He publicado mucho desde un punto de vista teórico sobre las actividades de laboratorio de matemática, también a propósito de la teoría de las situaciones de Guy Brousseau, por lo tanto al interior de teorías didácticas fundamentales, desde 1986 (como se sustrae de la lista de publicaciones que aparece en www.dm.unibo.it/rsddm).
1. Problemas, ejercicios y aprendizaje
1.1. Problemas y ejercicios
Consideremos la siguiente conjetura:
Cada número par mayor de 2 es la suma de dos números primos.
Verifiquemos: 14 es 11+3; 26 es 13+13; 80 es 7+73; (...) Por cuantas verificaciones se hagan, con números pares grandes o pequeños, con un poco de paciencia se encuentra una pareja de adendas primos que cumplen dicha condición.
¿Es éste un problema?
Una primera respuesta ingenua de un profesor de primaria fue: «No, no es un problema porque no hay una pregunta». Quien piensa esto o bien deja de leer este libro o lo debe leer con mucha atención. No hay una pregunta explícita, pero se trata de un problema, claro está.
Se trata de:
• demostrar esta afirmación (y entonces la conjetura se vuelve un teorema, es decir una afirmación verdadera en cuanto demostrada); o en cambio
• encontrar un ejemplo que contradiga la afirmación, o sea “exhibir” un número n par mayor de 2 y demostrar que no existen dos números primos cuya suma sea n.
Se resuelve el problema en uno u otro caso4.
Otra conjetura:
Estamos en una clase de 18 alumnos y queremos ir de excursión viajando en un autobús que cuesta 250.000 pesos; sin embargo, 2 de nosotros no pueden pagar. Si los 16 restantes contribuyen con 40.000 pesos cada uno, lo podremos hacer.
También en este caso la pregunta es implícita: ¿Es cierto o no que lo podremos hacer?
Esta vez es fácil transformar la conjetura y darle un valor de verdad: basta con hacer una multiplicación y verificar. ¿Se trata de un problema? No hay pregunta explícita, pero hay una situación que pone de presente una cuestión que hay que resolver. Podríamos llamarla “situación problemática”.
Aún otro ejemplo:
Juanito va al mercado con 600 pesos, compra huevos a 30 pesos cada uno y gasta todo. Regresando, rompe 3. ¿Cuántos huevos lleva a casa?
He ahí todos los ingredientes en el lugar preciso para obtener lo que en la escuela se llama problema: datos numéricos, una situación ficticia aun cuando comprensible e imaginable, una sugerencia semántica sobre las operaciones necesarias. Un verdadero y típico problema escolar. También con datos inútiles.
Sugiero una clasificación banal pero útil y muy difundida, entre
• problemas
• ejercicios.
Tanto los problemas como los ejercicios implican situaciones problemáticas causadas por varios factores: la propuesta del profesor (más o menos motivada), el test, la situación real y efectiva en la cual se encuentran el alumno o la clase, (…) Pero los ejercicios se pueden resolver utilizando reglas ya obtenidas, o en vía de consolidación y que, por lo tanto, entran en las categorías: refuerzo o evaluación inmediata. En cambio, los problemas involucran el uso de más reglas (algunas deben ser explicitadas precisamente en el momento) o una sucesión de operaciones cuya elección es un acto estratégico, a veces creativo, del alumno mismo.
Se entiende bien que las anteriores no son definiciones propiamente dichas: hay casos límite que se pueden interpretar en las dos posiciones. A mi modo de ver, se trata de un comportamiento que juega con los roles relacionales profesor-alumno, más que de una verdadera línea divisoria.
Tanto así que una situación problemática puede dar lugar a un problema o ejercicio según la situación didáctica. Veamos un ejemplo: se entrega un objeto circular plano (por ejemplo, la tapa de una olla) y se pide al alumno evaluar la longitud del contorno (una circunferencia).
En el primer año de primaria éste es un problema; en el grado octavo es (debería ser) un ejercicio.
Entran en juego también una serie de factores anexos:
• la motivación, como veremos más profundamente en el Capítulo 2, por la cual la distinción ejercicio/problema puede depender del comportamiento, de factores emocionales o emotivos, del rol que tiene la ejercitación en clase, del contrato que se ha venido creando, etc.;
• la mayor o menor cercanía de las situaciones problemáticas propuestas con la realidad. Me explico mejor. Usualmente los ejercicios de tipo escolar son del todo ficticios. Aquel Juanito que va al mercado con 600 pesos para comprar los huevos y que luego rompe 3, no existe y ningún niño de la clase se identifica con él: la situación es creíble, pero ficticia, nunca vivida. En cambio, un gasto para la excursión dividido entre 16 puede ser verdaderamente una situación problemática vivida en la realidad, a tener en cuenta para solicitar el análisis matemático. Se trata de decir correctamente los términos de la cuestión verbalmente (oral o escrito), hacerse una imagen mental, hacer que cada niño tenga un modelo matemático de la cuestión y, luego, pasar a la solución concreta: cuánto dinero debe pedir cada uno a sus padres para participar en la excursión.
No es necesario que la situación problemática sea experimentada en primera persona, la cosa es más sutil. En una clase de tercer año de primaria en la periferia de Bolonia, durante el segundo cuadrimestre, a instancia de ciertos discursos, se propuso el asunto de evaluar los gastos asumidos por la dirección didáctica en un año por concepto de energía eléctrica y calefacción. La situación problemática podría haberse considerado ficticia al principio, pero luego, mientras se procedió con el estudio de los recibos, la entrevista a un conserje, la visita a la empresa del gas, etc., la situación se enriqueció con la experiencia directa que la transformó de ficticia a real y concreta.
Decía que la motivación juega un rol no secundario: en un grupo interesado, la construcción de la sucesión de Fibonacci 1, 1, 2, 3, 5, 8, 13, (...), relacionada, en la historia y en las circunstancias, al aumento ideal de la población de las parejas de conejos de cría, sí es ficticia (porque en la realidad ninguno cría conejos en la ciudad y muchos niños nunca han visto un conejo real), pero con tal vínculo emotivo (el contexto se vivió con gran vivacidad) se convirtió en problema: cada uno quería dar su contribución personal que iba más allá de la simple operación aritmética (todo saben que cada número de la sucesión es la suma de los dos precedentes).
Queda aclarar, pero no es trivial, qué es la situación problemática en relación con el problema.
Читать дальше