Es obvio que en este punto se vuelve esencial definir bien el concepto de “problema”; ahora, si es cierto que en el primer capítulo enfrentaré un primer estudio sin profundizar sobre este punto fundamental, a vuelo de pájaro, también es cierto que la problemática no se extingue de hecho en el primer capítulo (el cual, en cambio, de acuerdo con mis intenciones, debe crear más (…) problemas de tipo interpretativo de los que puede resolver).
Como diré más adelante, el libro fue concebido a manera de espiral: qué es un problema es el argumento afrontado en el primer capítulo y NO resuelto allí. En cierto sentido, todo el libro es un intento por responder esta pregunta.
Cuando se habla de problemas, se disparan, entre los profesores de la escuela primaria, discusiones a propósito de:
• automatismos de cálculo (por ejemplo: tablas de multiplicar y similares);
• uso de las máquinas de cálculo (por ejemplo: ábacos, calculadoras, […]) (a favor, contrarios, más o menos, depende, […]);
• uso de otros instrumentos de cálculo más sofisticados (TIC).
A propósito de los automatismos de cálculo, sugiero la siguiente posición que exhibo desde siempre: si a las dificultades de resolución de un problema (de la comprensión textual a la elección de una estrategia resolutiva, como veremos de manera amplia y detallada) se agrega la dificultad de recordar cuánto es 7×8, ¡entonces sí que la actividad matemática se torna pesada! El aparente conservadurismo de quien propone adquirir automatismos de cálculo (acusación muy difundida en los primeros años de la década de los 70) se puede entender, en últimas, como un aligeramiento a favor de actividades más significativas. Luego, en cuanto al “cómo” (las tablas de multiplicar de memoria, o carteleras en las paredes que los niños u otra persona llenan diariamente, o algo más), el “estilo” del profesor y de los niños individualmente, podrían ser decisivos. Regresaré mucho más decididamente, en varias ocasiones, al problema de los automatismos de cálculo.
En cuanto a las máquinas calculadoras, he dicho y escrito mil veces, alborotando a veces avisperos, que el uso de las máquinas calculadoras no necesariamente lleva a la pérdida de la capacidad de hacer cálculos. Se puede incluso fácilmente demostrar que un uso inteligente y creativo de tal instrumento mejora las condiciones de la actividad escolar y facilita los cálculos; y lo demostramos con varias publicaciones (AA. VV., 1977).
A propósito de las calculadoras, en cambio, aquí un fragmento significativo:
Supongamos que debemos calcular: 0,18×75200+36500; digitando en orden las cifras y los signos de las operaciones, y al final la tecla =, una calculadora cualquiera de bajo costo puede dar el resultado correcto. Supongamos en cambio que debemos resolver el siguiente problema: Ángela dice a su papá: «Mido un metro y 32 centímetros»; el papá responde: «Yo soy 41 centímetros más alto que tú». ¿Qué tan alto es el papá de Ángela? Ninguna calculadora, ni siquiera una computadora, es capaz hoy de interpretar y resolver autónomamente un problema como éste, puesto en el teclado ¡tal como está “escrito”! La resolución de problemas matemáticos es tal vez la actividad matemática en la cual se constata con más claridad la brecha enorme de prestaciones que todavía separa el razonamiento humano del razonamiento que podemos “incorporar” en las máquinas. Esta constatación no es poco importante si se piensa en la importancia que tiene la resolución de problemas en la vida de todos los días y en muchas profesiones para comparar dos cotizaciones de seguros, hacer un presupuesto de gastos para unas vacaciones familiares, etc., es necesario individuar y resolver problemas en general bastante más complejos que aquel apenas citado; las calculadoras pueden ser de ayuda en la ejecución de los cálculos, pero las decisiones sobre los datos a tener en cuenta y sobre los cálculos a efectuar ¡no pueden ser delegadas a las máquinas existentes hoy en día! (Boero, 1990, p. 23)
No puedo más que hacer mía la posición de Paolo Boero expuesta aquí de manera muy convincente. Es extremadamente importante leer en el mismo texto también otros párrafos.
Una advertencia de gran importancia para la lectura de este libro. Se retorna una y otra vez sobre la misma cuestión; por lo que no se puede considerar cerrada una problemática en los primeros capítulos del libro, ya que será retomada ciertamente más adelante, de manera más profunda, una vez se pueda hacer uso de otros conocimientos. Lo anterior depende de la naturaleza de la temática evaluada: he imaginado una espiral cilíndrica que, después de cada giro, retorna a los mismos argumentos, enriquecida de experiencia. Tal y como es la característica de mucha didáctica (en forma de espiral) también este libro fue, y lo repito, escrito en espiral. Al leerlo no se puede olvidar, ni por un segundo, esta condición.
Agradecimientos
Doy las gracias a Martha Fandiño por la presencia constante y las críticas constructivas que fueron necesarias durante la escritura de este trabajo tan complejo, que a menudo excedió mis competencias y me obligó entonces a enfrentarme a una persona de plena confianza, del más alto nivel cultural y crítico. Y para ayudar a escribir este libro en español.
Doy las gracias a la traductora de esta obra, Diana Rocío Pérez Blanco.
Doy las gracias a Gianfranco Arrigo por su asistencia técnica en la creación de las imágenes, las figuras y los esquemas que ha creado con experiencia y amistad.
Nota bibliográfica
Indicaciones bibliográficas ulteriores sobre los laboratorios, además de las ya citadas (D’Amore, 1988a, 1988b, 1990-91; Caldelli, D’Amore, 1986; D’Amore, Marazzani, 2011).
Sugiero al lector interesado en la investigación dos lecturas, si es posible, preliminares (Boero, 1986; Boero, Ferrari, 1988). La rica bibliografía allí contenida será de gran ayuda para quien tenga intenciones de entrar a fondo en este campo de estudio.
Sugiero la lectura de (Pellerey, 1991a, 1991b).
Están también los “clásicos” del problem solving, el primero entre todos George Polya que citaré varias veces en este libro y sobre cuyo trabajo equivocadamente interpretado como didáctico discutiré muy críticamente al final del libro; entre todos los autores posibles, sugiero (Aebli, 1961; Lester, Garofalo, 1982; Schoenfeld, 1987a) porque su visión ha influido y no poco sobre las diversas elecciones descritas en este libro, aunque no siempre serán citados de manera explícita.
Recuerdo también el libro (Cofman, 1990).
Sobre la “didáctica a manera de espiral” tengo en mente el famoso modelo de Bruner (1962).
Hoy, en el 2020, frente a la posibilidad de sacar a la luz una nueva edición muy ampliada y muy enriquecida, tendré el deber de revisar algunas posiciones, de tomar en cuenta nuevas contribuciones que señalaré cada vez que lo considere necesario. Por ejemplo, citaré tesis y estudios publicados entre el ya lejano 1993 y el actual 2020. Pero lo haré de manera oportuna y específica a su debido tiempo.
Permanece el firme deseo de presentar esta obra que recoje los estudios sobre este delicado e interesantísimo problema didáctico, pero que no sea solo teórico (para investigadores en Didáctica de la Matemática), sino una fuente de rica estimulación concreta para los profesores de la escuela primaria, sobre todo, en su quehacer cotidiano.
Vale la pena recordar aquí la formidable aventura del Proyecto MaSE, sobre la cual he escrito tantas veces y que, por su magnitud histórica en el ámbito nacional italiano, obtuvo un lugar también en una famosa Enciclopedia, como lo he dicho anteriormente. Para la lista completa de los ejemplares, se puede consultar la bibliografía final (D’Amore, 1986-1993).
Читать дальше