Ronald J. Anderson - Introduction to Mechanical Vibrations

Здесь есть возможность читать онлайн «Ronald J. Anderson - Introduction to Mechanical Vibrations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Mechanical Vibrations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Mechanical Vibrations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering,
is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles.
The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace – finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods.
In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes:
● End of chapter exercises to help students review key topics and definitions
● Access to sample data files, software, and animations via a dedicated website

Introduction to Mechanical Vibrations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Mechanical Vibrations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.53) and the equation of motion Equation 151 becomes 154 Note the constant - фото 220

and the equation of motion ( Equation 1.51) becomes

(1.54) Introduction to Mechanical Vibrations - изображение 221

Note the constant term Introduction to Mechanical Vibrations - изображение 222that appears in Equation 1.54. This is the term that was set to zero to determine the equilibrium state (see Equation 1.45) and it is still equal to zero so it can be removed. The equilibrium condition is always a set of constant terms that must be zero for the system not to move and that set of constant terms always reappears in the linearized equation of motion. After removing the equilibrium condition, the linearized equation of motion for the pendulum becomes

(1.55) This equation is valid for motion about either of the two equilibrium states we - фото 223

This equation is valid for motion about either of the two equilibrium states we found (i.e. картинка 224with Introduction to Mechanical Vibrations - изображение 225and Introduction to Mechanical Vibrations - изображение 226with Introduction to Mechanical Vibrations - изображение 227). We write

(1.56) and 157 Equation 156will yield oscillating solutions ie vibrations - фото 228

and

(1.57) Equation 156will yield oscillating solutions ie vibrations more to come - фото 229

Equation 1.56will yield oscillating solutions (i.e. vibrations – more to come later) and Equation 1.57will yield growing exponential solutions, showing that the system really doesn't want to stay in the unstable upright position.

1.3.1.2 Linear EOM for the Bead on the Wire

The EOM for the bead on the rotating wire is

(1.58) Introduction to Mechanical Vibrations - изображение 230

As we did for the simple pendulum, we let Introduction to Mechanical Vibrations - изображение 231where картинка 232is a small angle. Since картинка 233is a constant, we differentiate to find that and Substituting into Equation 158gives 159 We use the tr - фото 234and Substituting into Equation 158gives 159 We use the trigonometric - фото 235. Substituting into Equation 1.58gives

(1.59) We use the trigonometric identities along with the li - фото 236

We use the trigonometric identities

along with the linearizing approximations for the small angle - фото 237 along with the linearizing approximations for the small angle - фото 238

along with the linearizing approximations for the small angle картинка 239

to get the linearized forms - фото 240 to get the linearized forms Then the term - фото 241

to get the linearized forms

Then the term which appears in Equation 159can be approximated - фото 242 Then the term which appears in Equation 159can be approximated by the product - фото 243

Then, the term which appears in Equation 159can be approximated by the product of these two - фото 244which appears in Equation 1.59can be approximated by the product of these two expressions

(1.60) We then say that the nonlinear term can be neglected as being negligibly small - фото 245

We then say that the nonlinear картинка 246term can be neglected as being negligibly small compared to the linear term картинка 247since is a small angle This is at the heart of the linearization process The - фото 248is a small angle. This is at the heart of the linearization process. The linearized EOM becomes

(1.61) Now we rearrange this to separate the constant terms from the terms with and - фото 249

Now we rearrange this to separate the constant terms from the terms with and its derivatives The result is 162 where the constant term - фото 250and its derivatives. The result is

(1.62) where the constant term is exactly the same as the equilibrium condition stated - фото 251

where the constant term is exactly the same as the equilibrium condition stated in Equation 147and it - фото 252is exactly the same as the equilibrium condition stated in Equation 1.47and it is identically equal to zero by definition so it can be removed from the equation of motion. This will always be the case for vibrational systems. As we progress through the following chapters, we will often say something to the effect of “the gravitational forces are canceled out by preloads in the springs so they can be ignored” where we actually mean that our equations of motion are written for small motions away from an equilibrium state and that we need only be concerned with how the forces in elements change as the system moves slightly away from equilibrium. There will be forces holding the system in equilibrium and they may be large but they always add up to zero. The equilibrium condition for the bead is actually a statement that the moment that the gravitational force exerts about point картинка 253is exactly equal and opposite to the moment about картинка 254due to the centripetal acceleration.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Mechanical Vibrations»

Представляем Вашему вниманию похожие книги на «Introduction to Mechanical Vibrations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Mechanical Vibrations»

Обсуждение, отзывы о книге «Introduction to Mechanical Vibrations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x