Ronald J. Anderson - Introduction to Mechanical Vibrations

Здесь есть возможность читать онлайн «Ronald J. Anderson - Introduction to Mechanical Vibrations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Mechanical Vibrations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Mechanical Vibrations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering,
is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles.
The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace – finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods.
In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes:
● End of chapter exercises to help students review key topics and definitions
● Access to sample data files, software, and animations via a dedicated website

Introduction to Mechanical Vibrations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Mechanical Vibrations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2.2 Equilibrium of the Bead on the Wire

We now return to our continuing example problem – the bead on a rotating semicircular wire as shown in Figure 1.1. The equation of motion (see Equation 1.23) is

(1.46) We look for solutions where the angle remains constant To find these - фото 194

We look for solutions where the angle картинка 195remains constant. To find these solutions, we let картинка 196and set so that the angle can never change This results in the equilibrium condition - фото 197so that the angle can never change. This results in the equilibrium condition

(1.47) The equilibrium condition is a group of constant terms summing up to zero that - фото 198

The equilibrium condition is a group of constant terms summing up to zero that becomes an identity for us. We will see this group of terms again when we write the equation of motion for small motions around equilibrium and every time we see it, we will be able to set it equal to zero.

With some simple factoring out of terms, we get

(1.48) This expression will hold for two cases This is satisfied when and when - фото 199

This expression will hold for two cases:

. This is satisfied when and when . These correspond to the bead being directly below point and directly above point respectively. Being above point is, of course, physically impossible for the semicircular wire but would be possible for a complete hoop.

. This is satisfied ifThis is an equilibrium value of where the gravitational pull and the centripetal effects exactly balance each other. It corresponds to an angle between and because the positive values of , , and force the cosine to be positive. We will be interested in the behavior of the bead for small motions about this equilibrium state. 6

1.3 Linearization

There two types of nonlinearities that we will often be required to deal with. They are (1) geometric nonlinearities and (2) structural nonlinearities. Geometric nonlinearities arise from trigonometric functions of large angles and structural nonlinearities are due to the inherent nonlinear stiffness (i.e. force versus deflection characteristic) of materials for large deflections.

1.3.1 Geometric Nonlinearities

Both the simple pendulum with the EOM (Equation of Motion)

(1.49) and the bead on a rotating wire with the EOM 150 have geometric - фото 200

and the bead on a rotating wire with the EOM

(1.50) have geometric nonlinearities arising from the sine and cosine terms They will - фото 201

have geometric nonlinearities arising from the sine and cosine terms. They will both be addressed in the following, starting with the simple pendulum.

1.3.1.1 Linear EOM for a Simple Pendulum

The nonlinear differential equation of motion for the pendulum ( Equation 1.44) is valid for any range of motion. The difficulty is that we can't solve nonlinear differential equations without resorting to numerical methods. We get around this problem by linearizing the differential equation because we have had courses on how to solve linear differential equations.

To do this, we consider small motions near the stable equilibrium state. Let картинка 202in Equation 1.44be replaced by картинка 203where картинка 204is a very small angle and Introduction to Mechanical Vibrations - изображение 205is the equilibrium value of Introduction to Mechanical Vibrations - изображение 206. That is,

Introduction to Mechanical Vibrations - изображение 207

and, differentiating with the knowledge that Introduction to Mechanical Vibrations - изображение 208is constant, we find

Introduction to Mechanical Vibrations - изображение 209

and then

Substituting into Equation 144yields 151 We can use the trigonometric - фото 210

Substituting into Equation 1.44yields

(1.51) We can use the trigonometric identity for the sine of the sum of two angles 7 - фото 211

We can use the trigonometric identity for the sine of the sum of two angles 7 to write

(1.52) We now consider rewriting Equation 152under the condition where is a very - фото 212

We now consider rewriting Equation 1.52under the condition where is a very small angle The small angle conditions on the sine and cosine are - фото 213is a very small angle. The small angle conditions on the sine and cosine are derived from their Maclaurin's Series expansions. The expansions are

and If is very small then higher powers of - фото 214

and

If is very small then higher powers of are much smaller and are negligibl - фото 215

If картинка 216is very small, then higher powers of картинка 217are much smaller and are negligible 8 in the series. We therefore approximate the sine and cosine with

and Equation 152can then be written as 153 and - фото 218

and

Equation 152can then be written as 153 and the equation of motion - фото 219

Equation 1.52can then be written as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Mechanical Vibrations»

Представляем Вашему вниманию похожие книги на «Introduction to Mechanical Vibrations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Mechanical Vibrations»

Обсуждение, отзывы о книге «Introduction to Mechanical Vibrations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x