Ronald J. Anderson - Introduction to Mechanical Vibrations

Здесь есть возможность читать онлайн «Ronald J. Anderson - Introduction to Mechanical Vibrations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Mechanical Vibrations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Mechanical Vibrations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering,
is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles.
The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace – finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods.
In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes:
● End of chapter exercises to help students review key topics and definitions
● Access to sample data files, software, and animations via a dedicated website

Introduction to Mechanical Vibrations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Mechanical Vibrations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A simple differentiation with respect to yields 141 Lagranges Equation can then be written as 142 - фото 164yields

(1.41) Lagranges Equation can then be written as 142 where - фото 165

Lagrange's Equation can then be written as

(1.42) where now represents the generalized force corresponding to all externally - фото 166

where картинка 167now represents the generalized force corresponding to all externally applied forces that are neither conservative nor linear viscous in nature. Finally, we can transfer the Rayleigh Dissipation term to the left‐hand side and write Lagrange's Equation with dissipation as

(1.43) 12 Equilibrium Solutions Equilibrium solutions of the equations of motion are - фото 168

1.2 Equilibrium Solutions

Equilibrium solutions of the equations of motion are those where the degrees of freedom assume values which cause their first and second derivatives to go to zero. Under these conditions, there will be no tendency for the values of the degrees of freedom to change and the system will be in an equilibrium state .

Some equilibrium states are stable and some are unstable and, inevitably, systems are either in a stable equilibrium state or trying to get to one . The study of small motions around a stable equilibrium state is called Vibrations .

1.2.1 Equilibrium of a Simple Pendulum

We start by considering the simple pendulum 5 shown in Figure 1.5. Using the angle as the single degree of freedom the equation of motion is 144 - фото 169as the single degree of freedom, the equation of motion is

(1.44) Figure 15 A simple pendulum Once started in motion the pendulum will swing - фото 170

Figure 15 A simple pendulum Once started in motion the pendulum will swing - фото 171

Figure 1.5 A simple pendulum.

Once started in motion the pendulum will swing about the point of connection to the ground. In the case of the simple pendulum there is no mechanism for removing energy from the system as it swings (i.e. no friction or other forces that do work) so the motion, once started, will persist.

The motion will depend on the way in which it is started. That is, if the pendulum is rotated to some arbitrary starting angle, картинка 172, and released from rest, it will swing through the position where картинка 173and will eventually return to where it started before reversing and starting the cyclic motion over again. If the pendulum is stopped and returned to картинка 174and then released, not from rest but with an initial velocity, the resulting motion will be different and the pendulum will pass through картинка 175when it returns. The motion will, however, still be cyclic.

The question we ask now is Are there initial values of картинка 176 where the pendulum can be released from rest and remain stationary? These are the equilibrium states.

Consider Equation 1.44under the conditions that there is an initial angle картинка 177and there is no angular velocity (i.e. картинка 178so that картинка 179does not change with time) and, further, that there is no angular acceleration (i.e. картинка 180so that картинка 181does not change with time and thus there will never be a change in Introduction to Mechanical Vibrations - изображение 182). This is an equilibrium position and Equation 1.44becomes the equilibrium condition .

(1.45) Introduction to Mechanical Vibrations - изображение 183

Since картинка 184, картинка 185, and картинка 186are never zero, this can only be satisfied by:

Introduction to Mechanical Vibrations - изображение 187

The total range of Introduction to Mechanical Vibrations - изображение 188is Introduction to Mechanical Vibrations - изображение 189. In this range, only картинка 190(the pendulum hangs vertically downward) and картинка 191(the pendulum stands upright) satisfy the requirements. These are the two equilibrium states for the pendulum.

There are formal methods for testing the stability of the equilibrium states but that we leave to courses on control systems. It is sufficient for us to be able to see that the state where the pendulum stands upright is unstable and the pendulum will try to get to the stable equilibrium position where картинка 192.

The vibrations question is What will be the response of the system for small motions away from the stable equilibrium condition where картинка 193 ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Mechanical Vibrations»

Представляем Вашему вниманию похожие книги на «Introduction to Mechanical Vibrations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Mechanical Vibrations»

Обсуждение, отзывы о книге «Introduction to Mechanical Vibrations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x