Ronald J. Anderson - Introduction to Mechanical Vibrations

Здесь есть возможность читать онлайн «Ronald J. Anderson - Introduction to Mechanical Vibrations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Mechanical Vibrations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Mechanical Vibrations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering,
is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles.
The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace – finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods.
In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes:
● End of chapter exercises to help students review key topics and definitions
● Access to sample data files, software, and animations via a dedicated website

Introduction to Mechanical Vibrations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Mechanical Vibrations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The potential energy of the system is due to gravity only. If the datum for potential energy is taken to be at point картинка 111, the potential energy, картинка 112, of the system is determined simply by the vertical distance from картинка 113to the bead. This distance is Introduction to Mechanical Vibrations - изображение 114and, as the mass is below the datum, the potential energy is negative, leading to

(1.21) Introduction to Mechanical Vibrations - изображение 115

Having expressions for картинка 116and картинка 117and a single degree of freedom, we can apply Lagranges Equation Equation 116 and find 122 - фото 118, we can apply Lagrange's Equation ( Equation 1.16) and find

(1.22) Substituting the expressions from Equation 122into Lagranges Equation - фото 119

Substituting the expressions from Equation 1.22into Lagrange's Equation ( Equation 1.16) gives the desired equation of motion

(1.23) where we note that this equation when divided throughout by yields the same - фото 120

where we note that this equation when divided throughout by картинка 121yields the same result as Equations 1.11and 1.15, the equation of motion derived using Newton's Laws.

Clearly, Equation 1.23could be further simplified by factoring out the group картинка 122but this would take away the ability to look at the individual terms and give a physical explanation for them. Whenever an equation is derived, the first test for correctness is to see if all of the terms have the same dimensions. In this case, the first term has dimensions of картинка 123where картинка 124is mass , картинка 125is length , and картинка 126is time . Note that angles such as картинка 127are in radians, which are dimensionless since they are defined by an arc length divided by a radius. It follows that trigonometric functions such as картинка 128and картинка 129are also dimensionless. Angular velocities therefore have dimensions derived from angles divided by time, картинка 130, and angular accelerations are expressed as картинка 131. Using these conventions, it is easy to see that all three terms in Equation 1.23have the same dimensions 3 .

The dimensions of force are картинка 132or mass times acceleration. Taking this into account, we can see that the three terms in Equation 1.23all have dimensions of картинка 133or force times length. The terms are, in fact, all moments. The third term is the most obvious because it contains the gravity force картинка 134multiplied by a moment arm of картинка 135. The moment arm is simply the horizontal distance between the mass and point картинка 136. Lagrange's Equation has produced an equation of motion based on a dynamic moment balance about the stationary point картинка 137and it did so without requiring the derivation of acceleration expressions, the drawing of free body diagrams, or the production of force and moment balance relationships. This is the power of using Lagrange's Equation for deriving equations of motion.

Following are explanations of terms that arise when using Lagrange's Equations.

1.1.3.2 Generalized Coordinates

The generalized coordinates are simply the degrees of freedom of the system with the condition that they be independently variable. That is, given a system with Introduction to Mechanical Vibrations - изображение 138generalized coordinates ( Introduction to Mechanical Vibrations - изображение 139), any generalized coordinate, картинка 140, must be able to undergo an arbitrary small variation, картинка 141, with all of the other generalized coordinates being held constant.

In the example just considered, we might try to specify the position of the bead on the wire by using two coordinates – the vertical distance from картинка 142and the horizontal distance from картинка 143. We would soon find that these coordinates are not independent because the bead is constrained to stay on the circular wire so changing the horizontal position requires a change in the vertical position. These two coordinates are therefore not generalized coordinates.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Mechanical Vibrations»

Представляем Вашему вниманию похожие книги на «Introduction to Mechanical Vibrations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Mechanical Vibrations»

Обсуждение, отзывы о книге «Introduction to Mechanical Vibrations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x