Ronald J. Anderson - Introduction to Mechanical Vibrations

Здесь есть возможность читать онлайн «Ronald J. Anderson - Introduction to Mechanical Vibrations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Mechanical Vibrations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Mechanical Vibrations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth introduction to the foundations of vibrations for students of mechanical engineering For students pursuing their education in Mechanical Engineering,
is a definitive resource. The text extensively covers foundational knowledge in the field and uses it to lead up to and include: finite elements, the inerter, Discrete Fourier Transforms, flow-induced vibrations, and self-excited oscillations in rail vehicles.
The text aims to accomplish two things in a single, introductory, semester-length, course in vibrations. The primary goal is to present the basics of vibrations in a manner that promotes understanding and interest while building a foundation of knowledge in the field. The secondary goal is to give students a good understanding of two topics that are ubiquitous in today's engineering workplace – finite element analysis (FEA) and Discrete Fourier Transforms (the DFT- most often seen in the form of the Fast Fourier Transform or FFT). FEA and FFT software tools are readily available to both students and practicing engineers and they need to be used with understanding and a degree of caution. While these two subjects fit nicely into vibrations, this book presents them in a way that emphasizes understanding of the underlying principles so that students are aware of both the power and the limitations of the methods.
In addition to covering all the topics that make up an introductory knowledge of vibrations, the book includes:
● End of chapter exercises to help students review key topics and definitions
● Access to sample data files, software, and animations via a dedicated website

Introduction to Mechanical Vibrations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Mechanical Vibrations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 13 A 2D representation of the bead on a wire The inset in Figure - фото 89

Figure 1.3 A 2D representation of the bead on a wire.

The inset in Figure 1.3shows a FBD of the bead with the gravitational force and radial normal force being visible in this plane. There is another normal force perpendicular to the plane that can't be seen in this view. It is Introduction to Mechanical Vibrations - изображение 90in Figure 1.2and was shown to be equal to Introduction to Mechanical Vibrations - изображение 91in Equation 1.9. The acceleration in this expression is a Coriolis acceleration. One needs quite a lot of experience with kinematic analysis to get the correct form of this term using an informal approach. Thankfully, it is perpendicular to the plane in which the bead moves relative to the wire, so it never appears in the equation of motion 1 .

Summing forces in the vertical and horizontal directions gives

(1.12) 113 To eliminate the constraining normal force from these two equations - фото 92

(1.13) To eliminate the constraining normal force from these two equations we - фото 93

To eliminate the constraining normal force from these two equations, we multiply Equation 1.12by картинка 94and Equation 1.13by and subtract the resulting expressions The result is 114 where it is - фото 95and subtract the resulting expressions. The result is

(1.14) where it is clear that both and are multiplied by zero and disappear f - фото 96

where it is clear that both картинка 97and картинка 98are multiplied by zero and disappear from further consideration whereas картинка 99is multiplied by a trigonometric identity equal to 1. Simplifying and substituting the derived kinematic expressions for and gives 115 which is the same nonlinear equation of motion - фото 100and gives 115 which is the same nonlinear equation of motion Equation 111 - фото 101gives

(1.15) which is the same nonlinear equation of motion Equation 111 found in - фото 102

which is the same nonlinear equation of motion ( Equation 1.11) found in Subsection 1.1.1.

1.1.3 Lagrange's Equations of Motion

In this section, we consider the use of Lagrange's 2 Equations of Motion.

Lagrange's Equations, since they are based on work/energy principles, give the analyst two distinct advantages when deriving the equations of motion. First, the vector kinematic analysis is shorter than it is with a direct application of Newton's Laws since acceleration vectors need not be found. This is because the kinetic and potential energy expressions can be derived from velocity vectors and position vectors respectively. Secondly, there is no need to draw free body diagrams for each of the rigid bodies in the system because the forces of constraint between the bodies do no work and are therefore not required for the analysis.

Of course, there are also disadvantages. The method requires a great deal of differentiation, sometimes of relatively complicated functions. Some analysts prefer the kinematics of Newton's method over the differentiation required when using Lagrange's Equations. Some point to a lack of physical feeling for problems without free body diagrams as being a disadvantage of the method. Finally, if the intent of analyzing the dynamics of a system is to predict loads, which could be carried forward into a structural analysis for instance, the forces of interaction between bodies are not available from a straightforward application of Lagrange's Equations.

1.1.3.1 The Bead on a Wire via Lagrange's Equations

We consider again the bead on the semicircular wire ( Figure 1.1) and derive the equation of motion using Lagrange's Equations.

Lagrange's Equation is:

(1.16) where the total kinetic energy of the system the total potential energy of - фото 103

where:

= the total kinetic energy of the system

= the total potential energy of the system

= a generalized coordinate

= the time derivative of

= the generalized force corresponding to a variation of

We first determine the kinetic energy of the system. This requires that we have an expression for the absolute velocity of the mass. This was done previously and the result, from Equation 1.5, is

(1.17) Introduction to Mechanical Vibrations - изображение 104

The kinetic energy of the system is then

(1.18) Introduction to Mechanical Vibrations - изображение 105

which becomes, after substitution of Equation 1.17and some simplification,

(1.19) Alternatively using the informal approach and referring to Figure 13 we can - фото 106

Alternatively, using the informal approach and referring to Figure 1.3, we can see that there will be a component of velocity equal to картинка 107tangent to the wire and another component equal to perpendicular to the wire and into the page These two components are mutually - фото 108perpendicular to the wire and into the page. These two components are mutually perpendicular so we can write, by applying Pythagoras' theorem,

(1.20) After factoring out of the brackets this becomes exactly the same expression - фото 109

After factoring картинка 110out of the brackets, this becomes exactly the same expression we had in Equation 1.19.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Mechanical Vibrations»

Представляем Вашему вниманию похожие книги на «Introduction to Mechanical Vibrations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Mechanical Vibrations»

Обсуждение, отзывы о книге «Introduction to Mechanical Vibrations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x