M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.101) Hence according to the RFB formulation explained in Section 37 is obtained - фото 1263

Hence, according to the RFB formulation explained in Section 3.7, is obtained as follows 3102 384 - фото 1264is obtained as follows:

3102 384 Remark 34 In an Euler angle sequence irrespective of - фото 1265

(3.102) 384 Remark 34 In an Euler angle sequence irrespective of whether it is an - фото 1266

3.8.4 Remark 3.4

In an Euler angle sequence, irrespective of whether it is an IFB ijk or an RFB ijk sequence, the indices must be such that ji and jk in order to keep the angles φ 1, φ 2, and φ 3independent. Otherwise, these angles can no longer be independent.

For example, if j = i , the three‐factor expression in Eq. (3.102)degenerates into the following two‐factor expression.

(3.103) Similarly if j k the threefactor expression in Eq 3102degenerates - фото 1267

Similarly, if j = k , the three‐factor expression in Eq. (3.102)degenerates this time into the following two‐factor expression.

(3.104) Equation 3103shows that has a missing parameter and it is expressed in terms - фото 1268

Equation (3.103)shows that картинка 1269has a missing parameter and it is expressed in terms of only two independent parameters, which are φ 4and φ 3. This is because φ 1and φ 2happen to be indistinguishable and indefinite rotation angles about the same axis with a combined effect that can actually be achieved by a single rotation angle φ 4. In other words, φ 1and φ 2happen to be dependent on each other because they complement each other to the effective rotation angle φ 4, that is, φ 1+ φ 2= φ 4.

Equation (3.104)shows a similar situation with a different effective rotation angle φ 5. In this case, φ 2and φ 3happen to be indistinguishable and indefinite rotation angles, which are dependent because they complement each other to the effective rotation angle φ 5, that is, φ 2+ φ 3= φ 5.

On the other hand, it is possible to have k = ij . Based on this possibility, an Euler angle sequence is called symmetric if k = i and asymmetric if ki . For example, the RFB 1‐2‐3 sequence is asymmetric, whereas the RFB 3‐1‐3 sequence is symmetric.

3.8.5 Remark 3.5

The comparison of Eqs. (3.95)and (3.102)shows that any transformation matrix obtained by an IFB sequence can also be obtained by an RFB sequence applied in the reversed order.

For example, the IFB 1‐2‐3 sequence (with the Euler angles φ 1, φ 2, and φ 3) and the RFB 3‐2‐1 sequence (with the Euler angles картинка 1270, картинка 1271, and give the same transformation matrix with the following relationships between - фото 1272) give the same transformation matrix with the following relationships between the Euler angles.

The IFB and RFB sequences mentioned above can be described as shown below - фото 1273

The IFB and RFB sequences mentioned above can be described as shown below.

Both of the above sequences lead to the same transformation matrix which is - фото 1274 Both of the above sequences lead to the same transformation matrix which is - фото 1275

Both of the above sequences lead to the same transformation matrix, which is

(3.105) Note that although and are the same in the two sequences described ab - фото 1276

Note that, although картинка 1277and картинка 1278are the same in the two sequences described above, the corresponding intermediate frames are obviously different. That is, картинка 1279and картинка 1280.

3.8.6 Remark 3.6: Preference Between IFB and RFB Sequences

Relying on Remark 3.5, the IFB sequences are almost never used in practice. One reason for this may be the difficulty of visualizing the rotational steps of an IFB sequence while картинка 1281is rotated into картинка 1282. The visualization of the rotational steps of an RFB sequence happens to be much easier. Another reason why the IFB sequences are not preferred may be the reversal in the order of the rotational steps and the order of multiplying the corresponding rotation matrices.

On the other hand, since the RFB sequences are used almost always in practice, the qualifier RFB is often omitted. In other words, an RFB ijk sequence is often referred to simply as an ijk sequence.

3.8.7 Commonly Used Euler Angle Sequences

1 (a) RFB 1‐2‐3 Sequence

This sequence is generally known as a roll‐pitch‐yaw sequence . The angles of this sequence are generally named and denoted as roll angle ( φ 1= φ ), pitch angle ( φ 2= θ ), and yaw angle ( φ 3= ψ ). As such, the transformation matrix is formed as follows:

(3.106) This sequence is not used very often with the general designations indicated - фото 1283

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x