M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.7.1 Rotated Frame Based (RFB) Formulation

In this case, rot( p , q ) is expressed as a rotation matrix in one of the two relevant reference frames, i.e. either in the pre‐rotation frame картинка 1199or in the post‐rotation frame картинка 1200. Thus, the transformation matrix Kinematics of General Spatial Mechanical Systems - изображение 1201is related to rot( p , q ) as follows according to Eq. (3.64):

(3.77) Kinematics of General Spatial Mechanical Systems - изображение 1202

Then, Eq. (3.76)gives with one of the following equivalent expressions 378 379 - фото 1203with one of the following equivalent expressions.

(3.78) 379 On the other hand is also equal to the overall rot - фото 1204

(3.79) On the other hand is also equal to the overall rotation matrix expressed in - фото 1205

On the other hand, картинка 1206is also equal to the overall rotation matrix expressed in either Kinematics of General Spatial Mechanical Systems - изображение 1207or Kinematics of General Spatial Mechanical Systems - изображение 1208. That is,

(3.80) Kinematics of General Spatial Mechanical Systems - изображение 1209

As noted above, in the rotated frame based (RFB) formulation, the rotation matrices are multiplied in the same order as the order of the rotation sequence indicated in Description (3.75).

3.7.2 Initial Frame Based (IFB) Formulation

In this case, all the rotation operators are expressed as the following rotation matrices in the initial reference frame 381 Of course in such a formulation except none of the - фото 1210.

(3.81) Of course in such a formulation except none of the above rotation matrices - фото 1211

Of course, in such a formulation, except картинка 1212, none of the above rotation matrices is a transformation matrix. Therefore, the transformation matrices required in Eq. (3.76)can be obtained as shown below by means of Eq. (3.74).

(3.82) Kinematics of General Spatial Mechanical Systems - изображение 1213

(3.83) Kinematics of General Spatial Mechanical Systems - изображение 1214

Kinematics of General Spatial Mechanical Systems - изображение 1215

(3.84) Kinematics of General Spatial Mechanical Systems - изображение 1216

(3.85) Kinematics of General Spatial Mechanical Systems - изображение 1217

Kinematics of General Spatial Mechanical Systems - изображение 1218

(3.86) Kinematics of General Spatial Mechanical Systems - изображение 1219

The pattern observed in Eqs. (3.84)and (3.86)implies that

(3.87) As noted above in the initial frame based IFB formulation the rotation - фото 1220

As noted above, in the initial frame based (IFB) formulation, the rotation matrices are multiplied in an order opposite to the order of the rotation sequence indicated in Description (3.75).

On the other hand, the rotation matrix картинка 1221(that describes the rotation of картинка 1222into картинка 1223) is mathematically equivalent to the orientation matrix картинка 1224(that describes the orientation of картинка 1225with respect to Based on this equivalence Eq 387can also be written as follows 388 - фото 1226). Based on this equivalence, Eq. (3.87)can also be written as follows:

(3.88) 38 Expression of a Transformation Matrix in Terms of Euler Angles 381 - фото 1227

3.8 Expression of a Transformation Matrix in Terms of Euler Angles

3.8.1 General Definition of Euler Angles

The Euler angles are named after the Swiss mathematician Leonhard Euler (1707–1783). With a modification of what Euler originally introduced, the definition of the Euler angles was later generalized so that they consist of three rotation angles ( φ 1, φ 2, φ 3) about three specified rotation axes. The three axes must be specified so that they are neither coplanar nor successively parallel or coincident. Thus, the Euler angles constitute a set of three independent parameters for the transformation matrix картинка 1228. When a set of Euler angles is used, the reference frame картинка 1229is obtained by rotating the reference frame through the following sequence of three rotations 389 In Description - фото 1230through the following sequence of three rotations.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x