M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This sequence is not used very often with the general designations indicated above.

On the other hand, it is used quite often in the area of robotics especially for the purpose of describing the orientation of the end‐effector of a manipulator with respect to the base frame. However, when it is used for this purpose, it is designated differently as a yaw‐pitch‐roll sequence . The angles are also named and denoted differently as yaw or swing angle ( φ 1= ψ ), pitch or bent angle ( φ 2= θ ), and roll or twist angle ( φ 3= φ ). With these designations, the transformation matrix is formed differently as follows:

(3.107) 1 b RFB 321 Sequence This sequence is generally known as a yawpitchroll - фото 1284

1 (b) RFB 3‐2‐1 Sequence

This sequence is generally known as a yaw‐pitch‐roll sequence . The angles of this sequence are conventionally named and denoted as yaw angle ( φ 1= ψ ), pitch angle ( φ 2= θ ), and roll angle ( φ 3= φ ). For this sequence, the transformation matrix is formed as follows:

(3.108) This sequence is used very commonly in the area of vehicle dynamics in order to - фото 1285

This sequence is used very commonly in the area of vehicle dynamics in order to describe the orientations of all sorts of land, sea, and air vehicles with respect to selected reference frames.

1 (c) RFB 3‐1‐3 Sequence

This sequence is generally known as a precession‐nutation‐spin sequence . The angles of this sequence are conventionally named and denoted as precession angle ( φ 1= φ ), nutation angle ( φ 2= θ ), and spin angle ( φ 3= ψ ). For this sequence, the transformation matrix is formed as follows:

(3.109) This sequence is used very commonly in the kinematic and dynamic studies that - фото 1286

This sequence is used very commonly in the kinematic and dynamic studies that involve spinning bodies such as tops, rotors of gyroscopes, celestial bodies, etc. Actually, this is the sequence that was originally introduced by Leonhard Euler.

1 (d) RFB 3‐2‐3 Sequence

This sequence is sometimes used as an alternative to the 3‐1‐3 sequence in the studies involving spinning bodies. When it is used so, it is also designated as a precession‐nutation‐spin sequence . The angles of this sequence are then similarly named and denoted as precession angle ( φ 1= φ ), nutation angle ( φ 2= θ ), and spin angle ( φ 3= ψ ). In such a usage, the transformation matrix is formed as

(3.110) This sequence is also used in the area of robotics as an alternative to the RFB - фото 1287

This sequence is also used in the area of robotics as an alternative to the RFB 1‐2‐3 sequence in order to describe the orientation of an end‐effector with respect to the base frame. When it is used so, it is generally designated as a yaw‐declination‐roll sequence . The angles are then named and denoted as yaw or swing angle ( φ 1= ψ ), declination angle ( φ 2= θ ), and roll or twist angle ( φ 3= φ ). In such a usage, the transformation matrix is formed as follows:

(3.111) Kinematics of General Spatial Mechanical Systems - изображение 1288

3.8.8 Extraction of Euler Angles from a Given Transformation Matrix

Suppose a transformation matrix is somehow given as

(3.112) Kinematics of General Spatial Mechanical Systems - изображение 1289

Then, the Euler angles of a selected sequence can be extracted from картинка 1290by using the procedure explained here. The procedure is explained here for two typical sequences. One of them is the RFB 3‐2‐3 sequence, which is symmetric, and the other one is the 1‐2‐3 sequence, which is asymmetric. However, the same procedure can be used similarly for any other sequence, too.

1 (a) Extraction of the 3‐2‐3 Euler Angles

If the RFB 3‐2‐3 sequence is used, Kinematics of General Spatial Mechanical Systems - изображение 1291is expressed as

(3.113) Kinematics of General Spatial Mechanical Systems - изображение 1292

By using the formulas presented in Chapter 2about the mathematical properties of the rotation matrices, the following set of five scalar equations can be derived from Eq. (3.113)by picking up the appropriate elements of 3114 - фото 1293.

Kinematics of General Spatial Mechanical Systems - изображение 1294 Kinematics of General Spatial Mechanical Systems - изображение 1295

(3.114) Kinematics of General Spatial Mechanical Systems - изображение 1296

Kinematics of General Spatial Mechanical Systems - изображение 1297 Kinematics of General Spatial Mechanical Systems - изображение 1298

(3.115) Kinematics of General Spatial Mechanical Systems - изображение 1299

Kinematics of General Spatial Mechanical Systems - изображение 1300 Kinematics of General Spatial Mechanical Systems - изображение 1301

(3.116) Kinematics of General Spatial Mechanical Systems - изображение 1302

3117 - фото 1303 3117 - фото 1304

(3.117) 3118 - фото 1305

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x