M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.89) In Description 389 and are the intermediate frames on the - фото 1231

In Description (3.89), картинка 1232and картинка 1233are the intermediate frames on the way from the initial frame картинка 1234to the final or terminal frame картинка 1235. As for the unit vectors картинка 1236, картинка 1237, and картинка 1238, they represent the specified rotation axes. They may be specified arbitrarily as desired in the generalized definition of the Euler angles, whereas they are specified as Kinematics of General Spatial Mechanical Systems - изображение 1239, Kinematics of General Spatial Mechanical Systems - изображение 1240, and картинка 1241in the original definition of the Euler angles.

Although картинка 1242, картинка 1243, and картинка 1244may be specified arbitrarily in general, in almost all the practical cases, each of them is specified as a selected basis vector of a selected reference frame. Thus, different Euler angle sequences arise depending on the selected reference frames and their selected basis vectors. All such Euler angle sequences are grouped into two main categories, which are designated as IFB and RFB sequences. These sequences are described and explained below.

3.8.2 IFB (Initial Frame Based) Euler Angle Sequences

In an IFB sequence, e.g. the IFB ijk sequence, each of the unit vectors of the rotation axes is specified as one of the basis vectors of the initial reference frame That is 390 The specified unit vectors must be such that j i and j - фото 1245. That is,

(3.90) The specified unit vectors must be such that j i and j k Such a rotation - фото 1246

The specified unit vectors must be such that ji and jk . Such a rotation sequence can be described as shown below.

(3.91) In such a sequence the matrix representations of all the rotation operators - фото 1247

In such a sequence, the matrix representations of all the rotation operators are expressed naturally in In other words 392 393 394 - фото 1248. In other words,

(3.92) 393 394 Hence according to the IFB form - фото 1249

(3.93) 394 Hence according to the IFB formulation explained in Section 37 - фото 1250

(3.94) Hence according to the IFB formulation explained in Section 37 is obtained - фото 1251

Hence, according to the IFB formulation explained in Section 3.7, is obtained as follows 395 383 R - фото 1252is obtained as follows:

395 383 RFB Rotated Frame Based Euler Angle Sequences In an RFB - фото 1253

(3.95) 383 RFB Rotated Frame Based Euler Angle Sequences In an RFB sequence eg - фото 1254

3.8.3 RFB (Rotated Frame Based) Euler Angle Sequences

In an RFB sequence, e.g. the RFB ijk sequence, each of the unit vectors of the rotation axes is specified as one of the basis vectors of the reference frames картинка 1255, and respectively That is 396 The specified unit vector - фото 1256, and respectively That is 396 The specified unit vectors must be such that - фото 1257, respectively. That is,

(3.96) The specified unit vectors must be such that j i and j k However since - фото 1258

The specified unit vectors must be such that ji and jk . However, since the rotation axes between the pre‐rotation and post‐rotation frames are common, the following equations can also be written for the unit vectors of the rotation axes.

(3.97) Such a rotation sequence can be described as shown below 398 In a - фото 1259

Such a rotation sequence can be described as shown below.

(3.98) In a sequence that has the axis unit vectors specified as shown above ie as - фото 1260

In a sequence that has the axis unit vectors specified as shown above, i.e. as the basis vectors of the pre‐rotation frames, the matrix representations of the rotation operators are also expressed naturally in the pre‐rotation frames. In other words,

(3.99) 3100 3101 Hence according to the RFB fo - фото 1261

(3.100) 3101 Hence according to the RFB formulation explained in Section 37 - фото 1262

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x