M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
345 Upon inserting c 32 Eq 343gives c 22as 346 - фото 1087

(3.45) Upon inserting c 32 Eq 343gives c 22as 346 Finally the third column - фото 1088

Upon inserting c 32, Eq. (3.43)gives c 22as

(3.46) Finally the third column is found as follows according to Eq 334 - фото 1089

Finally, the third column Kinematics of General Spatial Mechanical Systems - изображение 1090is found as follows according to Eq. (3.34):

Kinematics of General Spatial Mechanical Systems - изображение 1091

(3.47) Note that the procedure described above provides four different outcomes for - фото 1092

Note that the procedure described above provides four different outcomes for картинка 1093due to the independent sign variables σ 1and σ 2. To pick up one of these solutions, let σ 1= σ 2= + 1. This particular choice of σ 1and σ 2leads to which is shown below 348 As a check for the validity of the above - фото 1094, which is shown below.

(3.48) Kinematics of General Spatial Mechanical Systems - изображение 1095

As a check for the validity of the above solution, it can be shown that Kinematics of General Spatial Mechanical Systems - изображение 1096.

3.4 Expression of a Transformation Matrix as a Direction Cosine Matrix

3.4.1 Definitions of Direction Angles and Direction Cosines

The rotational deviation between two reference frames, e.g. картинка 1097and картинка 1098, can be represented by the direction angles as shown in Figure 3.2. In that figure, only six of the nine direction angles are illustrated for the sake of neatness. The direction angles between картинка 1099and are denoted and defined as follows for all i 1 2 3 and j 1 2 3 - фото 1100are denoted and defined as follows for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3}:

(3.49) Figure 32Direction angles between two reference frames Without any loss of - фото 1101

Figure 32Direction angles between two reference frames Without any loss of - фото 1102

Figure 3.2Direction angles between two reference frames.

Without any loss of generality, the direction angles can be defined to be positive angles that are confined to the range [0, π ]. That is,

Kinematics of General Spatial Mechanical Systems - изображение 1103

In a direct association with the direction angles, the direction cosines between Kinematics of General Spatial Mechanical Systems - изображение 1104and Kinematics of General Spatial Mechanical Systems - изображение 1105are denoted and defined as follows:

(3.50) Kinematics of General Spatial Mechanical Systems - изображение 1106

3.4.2 Transformation Matrix Formed as a Direction Cosine Matrix

Since the basis vectors of картинка 1107and Kinematics of General Spatial Mechanical Systems - изображение 1108are unit vectors, the direction cosines can also be defined by the following dot product equation written for all i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.

(3.51) Kinematics of General Spatial Mechanical Systems - изображение 1109

Using the transformation matrix картинка 1110and the matrix representations of картинка 1111and картинка 1112in one of the reference frames картинка 1113and say Eq 351can also be written and manipulated as shown below - фото 1114, say Kinematics of General Spatial Mechanical Systems - изображение 1115, Eq. (3.51)can also be written and manipulated as shown below.

Kinematics of General Spatial Mechanical Systems - изображение 1116

(3.52) Kinematics of General Spatial Mechanical Systems - изображение 1117

As mentioned before, картинка 1118and картинка 1119pick up the i th row and j th column of the matrix they multiply. Therefore, картинка 1120happens to be the ij element of картинка 1121according to Eq. (3.52). Owing to this fact, картинка 1122can be constructed as a direction cosine matrix , i.e. as a matrix constructed as follows by stacking the direction cosines between and 353 In Eq 353 cθ is used as an abbrevia - фото 1123and 353 In Eq 353 cθ is used as an abbreviation for cos θ 35 - фото 1124.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x