M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems
Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Kinematics of General Spatial Mechanical Systems
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

can be expressed completely in terms of only three independent parameters.
associated with
is not only orthonormal but also right‐handed . Therefore, one of the columns of
can be obtained from its other two columns by using the cross product operation. For example,
and hence
can be obtained as follows by using the matrix equivalent of the cross product operation:
readily in terms of its other six elements. In other words, it already provides three independent constraint equations on the nine elements of
. Therefore, in the presence of Eq. (3.34), only three additional independent constraint equations can be posed on the elements of
. These three additional constraint equations are written as follows involving the first two columns of
:


.
, which is briefly denoted here as
, are selected as its three elements, which are c 11, c 21, and c 12. The following values are specified for them.
by finding its remaining six elements.
can be written as
are determined partially as shown below.
, c 31is found as follows with a sign ambiguity represented by σ 1= ± 1:
leads to the following equation.

leads to the following additional equation.


