M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Kinematics of General Spatial Mechanical Systems - изображение 949

More specifically, the function atan 2( η , ξ ) gives the outcome θ as follows depending on the values of the arguments η and ξ :

Kinematics of General Spatial Mechanical Systems - фото 950 Kinematics of General Spatial Mechanical Systems - фото 951 Kinematics of General Spatial Mechanical Systems - фото 952 3 Matrix Representations of Vectors in Diffe - фото 953 3 Matrix Representations of Vectors in Different Reference Frames and the - фото 954 3 Matrix Representations of Vectors in Different Reference Frames and the - фото 955

3 Matrix Representations of Vectors in Different Reference Frames and the Component Transformation Matrices

Synopsis

As mentioned in Chapter 1, the vectors are independent of the reference frames in which they are observed. However, their components are naturally dependent on the selected observation frames. In other words, they have different components and matrix representations in different reference frames. Their matrix representations in different reference frames are related to each other by means of the transformation matrices . The transformation matrix between two reference frames can be expressed in various ways. It can be expressed as a rotation matrix , or as a direction cosine matrix , or as a function of the Euler angles of a selected sequence, or as a function of the basis vectors of the relevant reference frames. All these expressions are studied in this chapter together with several examples. Moreover, the matrix representations of the position vectors of a point in differently oriented and/or located reference frames can be related by means of either affine or homogeneous transformations. So, the affine and homogeneous transformations together with the 4 × 4 homogeneous transformation matrices are also studied in this chapter.

3.1 Matrix Representations of a Vector in Different Reference Frames

Consider a vector картинка 956and two different reference frames картинка 957and картинка 958, which are shown in Figure 3.1. Both картинка 959and are assumed to be orthonormal righthanded and equally scaled on their axes - фото 960are assumed to be orthonormal, right‐handed, and equally scaled on their axes. They have different orientations described by the following basis vector triads.

(3.1) In and the observed vector - фото 961

In картинка 962and the observed vector is resolved differently as shown below 32 - фото 963, the observed vector is resolved differently as shown below 32 In Eq 32 the components of - фото 964is resolved differently as shown below.

(3.2) In Eq 32 the components of in and - фото 965

In Eq. (3.2), the components of картинка 966in Kinematics of General Spatial Mechanical Systems - изображение 967and Kinematics of General Spatial Mechanical Systems - изображение 968are obtained as follows for k ∈ {1, 2, 3}:

(3.3) Kinematics of General Spatial Mechanical Systems - изображение 969

(3.4) Kinematics of General Spatial Mechanical Systems - изображение 970

Figure 31A vector observed in two different reference frames The components - фото 971

Figure 3.1A vector observed in two different reference frames.

The components of картинка 972that are obtained above can be stacked into the following column matrices, which are defined as the matrix representations of картинка 973in and 35 36 - фото 974and 35 36 On the other hand by recalling the d - фото 975.

(3.5) 36 On the other hand by recalling the definition of the basic column - фото 976

(3.6) On the other hand by recalling the definition of the basic column matrices - фото 977

On the other hand, by recalling the definition of the basic column matrices from Chapter 1, the following equations can be written.

(3.7) 38 Hence referring to Eq 32 and - фото 978

(3.8) Hence referring to Eq 32 and can also be expressed as shown belo - фото 979

Hence, referring to Eq. (3.2), and can also be expressed as shown below 39 310 - фото 980and can also be expressed as shown below 39 310 - фото 981can also be expressed as shown below.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x