M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.114) Most typically is specified as an overall rotation matrix in a case of m - фото 860

Most typically, is specified as an overall rotation matrix in a case of m successive rotations - фото 861is specified as an overall rotation matrix in a case of m successive rotations so that Here it is required to find the angle and axis ie θ and of the overall - фото 862. Here, it is required to find the angle and axis, i.e. θ and of the overall rotation operator In order to find them Eq 2114can be - фото 863, of the overall rotation operator. In order to find them, Eq. (2.114)can be written again in the following detailed form.

(2.115) Equation 2115provides the following scalar equations 2116 2117 - фото 864

Equation (2.115)provides the following scalar equations.

(2.116) 2117 2118 2119 - фото 865

(2.117) 2118 2119 2120 - фото 866

(2.118) 2119 2120 2121 - фото 867

(2.119) 2120 2121 2122 - фото 868

(2.120) 2121 2122 2123 - фото 869

(2.121) 2122 2123 2124 - фото 870

(2.122) 2123 2124 Furthermore the following thr - фото 871

(2.123) 2124 Furthermore the following three equations can be obtained from Eqs - фото 872

(2.124) Furthermore the following three equations can be obtained from Eqs 2119 - фото 873

Furthermore, the following three equations can be obtained from Eqs. (2.119)– (2.124).

(2.125) 2126 2127 2 - фото 874

(2.126) 2127 292 Determination of the Angle of Rotation Note that - фото 875

(2.127) 292 Determination of the Angle of Rotation Note that ie 2128 - фото 876

2.9.2 Determination of the Angle of Rotation

Note that Kinematics of General Spatial Mechanical Systems - изображение 877, i.e.

(2.128) Kinematics of General Spatial Mechanical Systems - изображение 878

Therefore, the side‐by‐side addition of Eqs. (2.116)– (2.118)leads to the following equation.

(2.129) Hence cos θ and sin θ are found as follows 2130 2131 - фото 879

Hence, cos θ and sin θ are found as follows:

(2.130) 2131 In Eq 2131 σ is an arbitrary sign variable ie 2132 - фото 880

(2.131) In Eq 2131 σ is an arbitrary sign variable ie 2132 With the - фото 881

In Eq. (2.131), σ is an arbitrary sign variable, i.e.

(2.132) With the availability of sin θ and cos θ θ can be found by means of the - фото 882

With the availability of sin θ and cos θ , θ can be found by means of the double argument arctangent function . That is,

(2.133) The definition and the properties of the atan 2function can be seen in Section - фото 883

The definition and the properties of the atan 2function can be seen in Section 2.10.

2.9.3 Determination of the Axis of Rotation

1 (a) General Case with sin θ ≠ 0

In a general case such that sin θ ≠ 0, Eqs. (2.125)– (2.127)give the components of as follows 2134 2135 2136 - фото 884as follows:

(2.134) Kinematics of General Spatial Mechanical Systems - фото 885

(2.135) 2136 1 b Special Cases with sin θ 0 However if sin θ 0 then Eqs - фото 886

(2.136) 1 b Special Cases with sin θ 0 However if sin θ 0 then Eqs 2125 - фото 887

1 (b) Special Cases with sin θ = 0

However, if sin θ = 0, then Eqs. (2.125)– (2.127)cannot give the components of картинка 888. There are three distinct cases, in which sin θ = 0. These cases are discussed below by considering θ to be in the minimal rotation range , without any loss of generality. This range is defined so that 0 ≤ | θ | ≤ 2 π .

1 Special Case with No Rotation

In this case, θ = 0 and картинка 889becomes indefinite. Indeed, if there is not any rotation at the moment, then картинка 890represents any arbitrary unit vector that forms the axis of a prospective rotation, which is yet unknown.

1 Special Case with Full Rotation

In this case, θ = ± 2 π and картинка 891becomes indefinite again. Indeed, after a full rotation, a rotated vector comes back to its initial orientation no matter what the rotation axis is. In other words, according to the mathematical property expressed by Eq. (2.68)in Section 2.7, the following equation is satisfied for any arbitrary Kinematics of General Spatial Mechanical Systems - изображение 892.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x