M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.158) Kinematics of General Spatial Mechanical Systems - изображение 923

Case 3: Two of the components of картинка 924are zero.

Let ijk ∈ {123, 231, 312} again and this time suppose that n i= n j= 0, while n k≠ 0. In such a case, Eqs. (2.138)– (2.143)imply that r kk= + 1, r ij= r ji= r jk= r kj= r ki= r ik= 0, and r ii= r jj= − 1. Then, as the only nonzero component,

(2.159) Kinematics of General Spatial Mechanical Systems - изображение 925

2.9.4 Discussion About the Optional Sign Variables

Considering the sign variables σ and σ ′ that occur in Sections 2.9.2and 2.9.3, it is possible to select them as σ = + 1 and σ ′ = + 1 without much loss of generality. A discussion about this statement is presented below.

1 (a) General Case with sin θ ≠ 0

In such a case, according to Eqs. (2.131)– (2.136), if σ = + 1 leads to θ and картинка 926, then σ = − 1 leads to θ ′ = − θ and картинка 927. However, the pair Kinematics of General Spatial Mechanical Systems - изображение 928is equivalent to the pair Kinematics of General Spatial Mechanical Systems - изображение 929as confirmed by the following equation.

(2.160) Kinematics of General Spatial Mechanical Systems - изображение 930

Due to Eq. (2.160), σ has no effect on the rotation matrix картинка 931. Therefore, in a case such that θ and картинка 932are required to be determined only once in a while or in a somewhat special case such that θ and картинка 933are required to be determined frequently but the successive values of θ never become zero, the sign ambiguity may be eliminated by selecting the option with σ = + 1 so that θ > 0. However, in a case such that θ and картинка 934are required to be determined frequently and the successive values of θ turn out to be fluctuating in the vicinity of zero, it may be more appropriate to have θ change its sign (i.e. to have σ switching between +1 and −1) rather than having картинка 935change its orientation from one direction to the opposite one abruptly and frequently. In other words, it may be more preferable to have картинка 936rather than картинка 937.

1 (b) Special Case with a Half Rotation

In such a case, θ = σπ with σ = ± 1. On the other hand, as observed in Eqs. ( 2.153, 2.154, 2.155, 2.156, 2.157, 2.158, 2.159), σ ′ (i.e. the sense of картинка 938) is not related to σ = sgn( θ ). As a matter of fact, the angle‐axis pair leads to the same rotation matrix whatever σ and σ are This statement is - фото 939leads to the same rotation matrix, whatever σ and σ ′ are. This statement is confirmed as shown below.

(2.161) Owing to Eq 2161 whatever σ is the sign ambiguity caused by σ can again - фото 940

Owing to Eq. (2.161), whatever σ is, the sign ambiguity caused by σ ′ can again be eliminated by selecting the option with σ ′ = + 1, if θ and картинка 941are required to be determined only once in a while. However, if θ and картинка 942are required to be determined frequently in a case such that the values of θ happen to be σπ at certain successive instants, then it may be more appropriate to prevent the possibility that картинка 943changes its direction abruptly as soon as θ becomes σπ . In other words, instead of insisting on the choice σ ′ = + 1, it may be preferable to choose σ ′ so that with θ t σπ and with are almost codirectio - фото 944with θ ( t ) = σπ and Kinematics of General Spatial Mechanical Systems - изображение 945with Kinematics of General Spatial Mechanical Systems - изображение 946are almost codirectional, i.e. Kinematics of General Spatial Mechanical Systems - изображение 947.

2.10 Definition and Properties of the Double Argument Arctangent Function

The double argument arctangent function, which is denoted as atan 2( η , ξ ), is defined so that it satisfies the following identity for any ρ > 0.

(2.162) The most characteristic feature of the function atan 2 η ξ is that it - фото 948

The most characteristic feature of the function atan 2( η , ξ ) is that it gives θ without any quadrant ambiguity in the following interval, whenever η ≠ 0 and ξ ≠ 0.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x