M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems
Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Kinematics of General Spatial Mechanical Systems
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

are zero.
, then σ = − 1 leads to θ ′ = − θ and
. However, the pair
is equivalent to the pair
as confirmed by the following equation.
. Therefore, in a case such that θ and
are required to be determined only once in a while or in a somewhat special case such that θ and
are required to be determined frequently but the successive values of θ never become zero, the sign ambiguity may be eliminated by selecting the option with σ = + 1 so that θ > 0. However, in a case such that θ and
are required to be determined frequently and the successive values of θ turn out to be fluctuating in the vicinity of zero, it may be more appropriate to have θ change its sign (i.e. to have σ switching between +1 and −1) rather than having
change its orientation from one direction to the opposite one abruptly and frequently. In other words, it may be more preferable to have
rather than
.
) is not related to σ = sgn( θ ). As a matter of fact, the angle‐axis pair
leads to the same rotation matrix, whatever σ and σ ′ are. This statement is confirmed as shown below.
are required to be determined only once in a while. However, if θ and
are required to be determined frequently in a case such that the values of θ happen to be σπ at certain successive instants, then it may be more appropriate to prevent the possibility that
changes its direction abruptly as soon as θ becomes σπ . In other words, instead of insisting on the choice σ ′ = + 1, it may be preferable to choose σ ′ so that
with θ ( t ) = σπ and
with
are almost codirectional, i.e.
.
