M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

According to Eq. Set (2.58), Kinematics of General Spatial Mechanical Systems - изображение 761. Therefore, Eq. (2.59)becomes

(2.60) Kinematics of General Spatial Mechanical Systems - изображение 762

At this point, by using Eq. (2.55), Eq. (2.60)can also be written as

(2.61) Since is an orthonormal matrix it obeys Eq 248 That is 262 - фото 763

Since Kinematics of General Spatial Mechanical Systems - изображение 764is an orthonormal matrix, it obeys Eq. (2.48). That is,

(2.62) Kinematics of General Spatial Mechanical Systems - изображение 765

Therefore, Eq. (2.61)leads to the verification that

(2.63) 27 Mathematical Properties of the Rotation Matrices The rotation matrices - фото 766

2.7 Mathematical Properties of the Rotation Matrices

The rotation matrices have several mathematical properties that turn out to be quite useful especially in the symbolic matrix manipulations required in the analytical treatments within the scope of rotational kinematics. These properties are shown and explained below in Sections 2.7.1and 2.7.2. In both sections, the rotation matrices are expressed in exponential form and the unit vectors of the rotation axes are represented by plain column matrices, such as картинка 767, without explicit frame indication.

2.7.1 Mathematical Properties of General Rotation Matrices

1 Determinant of a Rotation Matrix

As verified in Section 2.6,

(2.64) Kinematics of General Spatial Mechanical Systems - изображение 768

1 Inversion of a Rotation Matrix

As also verified in Section 2.6,

(2.65) Equation 265shows that a rotation can be reversed either by reversing the - фото 769

Equation (2.65)shows that a rotation can be reversed either by reversing the rotation angle or by reversing the unit vector of the rotation axis.

1 Combination of Successive Rotation Matrices

Two successive rotations about skew axes are neither commutative nor additive. In other words, if 266 Two successive rotations about parallel or coincident axes are both - фото 770,

(2.66) Two successive rotations about parallel or coincident axes are both commutative - фото 771

Two successive rotations about parallel or coincident axes are both commutative and additive. In other words, if 267 1 Additional Full Half and Quarter Rotations The effect of a full - фото 772,

(2.67) 1 Additional Full Half and Quarter Rotations The effect of a full additional - фото 773

1 Additional Full, Half, and Quarter Rotations

The effect of a full additional rotation is nil. That is,

(2.68) The effect of a half additional rotation can be expressed as follows 269 - фото 774

The effect of a half additional rotation can be expressed as follows:

(2.69) The effect of a quarter additional rotation can be expressed as follows 270 - фото 775

The effect of a quarter additional rotation can be expressed as follows:

(2.70) In the preceding formulas σ is an arbitrary sign variable ie σ 1 1 - фото 776

In the preceding formulas, σ is an arbitrary sign variable, i.e. σ = ± 1.

1 Effectivity of a Rotation Operator

A rotation operator is ineffective on the unit vector of its own axis. That is,

(2.71) Kinematics of General Spatial Mechanical Systems - изображение 777

However, one must be careful that

(2.72) Kinematics of General Spatial Mechanical Systems - изображение 778

1 Angular Differentiation of a Rotation Matrix

A rotation matrix can be differentiated with respect to θ as follows 273 1 Rotation About - фото 779can be differentiated with respect to θ as follows:

(2.73) 1 Rotation About Rotated Axis Let be rotated into by - фото 780

1 Rotation About Rotated Axis

Let картинка 781be rotated into Kinematics of General Spatial Mechanical Systems - изображение 782by Kinematics of General Spatial Mechanical Systems - изображение 783so that

(2.74) Kinematics of General Spatial Mechanical Systems - изображение 784

Then, it can be shown that Eq. (2.74)leads to the following equations.

(2.75) Kinematics of General Spatial Mechanical Systems - изображение 785

(2.76) Kinematics of General Spatial Mechanical Systems - изображение 786

Equation (2.76)is the expression of the rotation about rotated axis formula .

1 Shifting Formulas for the Rotation Matrices

The following two formulas, which are called shifting formulas , can be obtained as two consequences of Eq. (2.76).

(2.77) 278 272 Mathematical Properties of the Basic Rotation Matrices In - фото 787

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x