M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems
Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Kinematics of General Spatial Mechanical Systems
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.
can be obtained by using Eq. (2.14), which is repeated below for the sake of convenience.
and
are symmetric matrices having their transposes equal to themselves but
is a skew symmetric matrix, i.e.
. Therefore, Eqs. 2.49and 2.50lead to the following result.

always exists. Therefore, its determinant never vanishes. In fact, it happens that
can be expressed as follows in terms of its columns:
picks up the k th column of the matrix it multiplies,
can be obtained as follows together with the interpretation that
.
represents a vector
, which is obtained by rotating the basis vector
of the reference frame
by means of the rotation operator represented by
.
is assumed to be a right‐handed reference frame, its basis vectors satisfy the following set of cross product equations.
,
, and
, which are obtained by rotating
,
, and
, also satisfy a set of equations similar to Eq. Set (2.56). That is,
, the matrix equivalent of Eq. Set (2.57)can be written as follows:
, can be expressed as follows in terms of its columns, i.e.
,
, and
:
