M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Owing to its orthonormality, the inverse of can be obtained by using Eq 214 which is repeated below for the sake of - фото 724can be obtained by using Eq. (2.14), which is repeated below for the sake of convenience.

(2.50) Note that and are symmetric matrices having their transposes equal to - фото 725

Note that картинка 726and картинка 727are symmetric matrices having their transposes equal to themselves but Kinematics of General Spatial Mechanical Systems - изображение 728is a skew symmetric matrix, i.e. Kinematics of General Spatial Mechanical Systems - изображение 729. Therefore, Eqs. 2.49and 2.50lead to the following result.

(2.51) Referring to Eq 226 Eq 251implies the following exponential - фото 730

Referring to Eq. (2.26), Eq. (2.51)implies the following exponential expression.

(2.52) Equations 251and 252show that the inverse of always exists Therefore - фото 731

Equations (2.51)and (2.52)show that the inverse of Kinematics of General Spatial Mechanical Systems - изображение 732always exists. Therefore, its determinant never vanishes. In fact, it happens that

(2.53) Kinematics of General Spatial Mechanical Systems - изображение 733

Equation (2.53)can be verified as explained below.

The matrix can be expressed as follows in terms of its columns 254 Since the k th - фото 734can be expressed as follows in terms of its columns:

(2.54) Since the k th basic column matrix picks up the k th column of the matrix it - фото 735

Since the k th basic column matrix картинка 736picks up the k th column of the matrix it multiplies, Kinematics of General Spatial Mechanical Systems - изображение 737can be obtained as follows together with the interpretation that Kinematics of General Spatial Mechanical Systems - изображение 738.

(2.55) According to Eq 255 represents a vector which is obtained by ro - фото 739

According to Eq. (2.55), картинка 740represents a vector картинка 741, which is obtained by rotating the basis vector картинка 742of the reference frame картинка 743by means of the rotation operator represented by картинка 744.

Since is assumed to be a righthanded reference frame its basis vectors satisfy the - фото 745is assumed to be a right‐handed reference frame, its basis vectors satisfy the following set of cross product equations.

(2.56) Here it must be pointed out that a rotation operator does not only retain the - фото 746

Here, it must be pointed out that a rotation operator does not only retain the magnitudes of the vectors it rotates but it also retains the right‐hand rule for their cross products. Therefore, the vectors картинка 747, картинка 748, and картинка 749, which are obtained by rotating картинка 750, картинка 751, and also satisfy a set of equations similar to Eq Set 256 That is 257 - фото 752, also satisfy a set of equations similar to Eq. Set (2.56). That is,

(2.57) In the frame the matrix equivalent of Eq Set 257can be written as - фото 753

In the frame the matrix equivalent of Eq Set 257can be written as follows 258 On - фото 754, the matrix equivalent of Eq. Set (2.57)can be written as follows:

(2.58) On the other hand as shown in Example 13 of Section 18 the determinant of a - фото 755

On the other hand, as shown in Example 1.3 of Section 1.8, the determinant of a matrix, e.g. картинка 756, can be expressed as follows in terms of its columns, i.e. картинка 757, and 259 According to Eq Set 258 - фото 758, and Kinematics of General Spatial Mechanical Systems - изображение 759:

(2.59) Kinematics of General Spatial Mechanical Systems - изображение 760

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x