M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.24) Based on the above analogy the function can be expressed exponentially as - фото 649

Based on the above analogy, the function Kinematics of General Spatial Mechanical Systems - изображение 650can be expressed exponentially as

(2.25) Kinematics of General Spatial Mechanical Systems - изображение 651

Hence, the rotation matrix can also be expressed exponentially as 226 Note that the exponential - фото 652can also be expressed exponentially as

(2.26) Note that the exponential expression of is not only very compact but it also - фото 653

Note that the exponential expression of картинка 654is not only very compact but it also indicates the angle and axis of the rotation explicitly. Therefore, the exponentially expressed rotation matrices can be used quite conveniently in the symbolic manipulations required in the analytical treatments within the scope of rotational kinematics. For the sake of verbal brevity, an exponentially expressed rotation matrix is simply called here an exponential rotation matrix .

2.4 Basic Rotation Matrices

A rotation may be carried out about one of the coordinate axes of a reference frame картинка 655. Such a rotation is defined as a basic rotation with respect to картинка 656. More specifically, the k th basic rotation with respect to картинка 657takes place about the k th coordinate axis of картинка 658. Therefore, the unit vector of the rotation axis of this basic rotation is the k th basis vector of Kinematics of General Spatial Mechanical Systems - изображение 659, i.e. Kinematics of General Spatial Mechanical Systems - изображение 660. The operator of this basic rotation is denoted as

(2.27) Kinematics of General Spatial Mechanical Systems - изображение 661

The k th basic rotation operator associated with картинка 662is represented in картинка 663by the matrix which is designated as the k th basic rotation matrix It is expressed as - фото 664, which is designated as the k th basic rotation matrix . It is expressed as follows:

Kinematics of General Spatial Mechanical Systems - изображение 665

(2.28) Kinematics of General Spatial Mechanical Systems - изображение 666

Referring to Section for the discussion about the basic column matrix картинка 667, it is to be noted that, just like картинка 668, the basic rotation matrix картинка 669is also an entity that is not associated with any reference frame. This is because Kinematics of General Spatial Mechanical Systems - изображение 670represents the rotation operator Kinematics of General Spatial Mechanical Systems - изображение 671in its own frame whatever is In other words 229 By using Eqs - фото 672, whatever is In other words 229 By using Eqs can be expressed in t - фото 673is. In other words,

(2.29) By using Eqs can be expressed in three equivalent ways as shown in the - фото 674

By using Eqs., can be expressed in three equivalent ways as shown in the following equations - фото 675can be expressed in three equivalent ways as shown in the following equations.

(2.30) Kinematics of General Spatial Mechanical Systems - изображение 676

(2.31) Kinematics of General Spatial Mechanical Systems - изображение 677

(2.32) Kinematics of General Spatial Mechanical Systems - изображение 678

Upon inserting the expressions of the basic column matrices into Eq. (2.30), the basic rotation matrices can be expressed element by element as shown below.

(2.33) 234 235 25 Successi - фото 679

(2.34) 235 25 Successive Rotations Suppose a vector - фото 680

(2.35) 25 Successive Rotations Suppose a vector is first rotated into a vector - фото 681

2.5 Successive Rotations

Suppose a vector картинка 682is first rotated into a vector картинка 683and then картинка 684is rotated into another vector These two successive rotations can be described as indicated below 236 - фото 685. These two successive rotations can be described as indicated below.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x