M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.78) Kinematics of General Spatial Mechanical Systems - изображение 544

Hence, Kinematics of General Spatial Mechanical Systems - изображение 545and Kinematics of General Spatial Mechanical Systems - изображение 546are obtained as shown below.

(1.79) Kinematics of General Spatial Mechanical Systems - изображение 547

(1.80) 183 Example 13 Consider the following 3 3 matrix equation which is to be - фото 548

1.8.3 Example 1.3

Consider the following 3 ×3 matrix equation, which is to be solved for картинка 549.

(1.81) картинка 550

The matrix Kinematics of General Spatial Mechanical Systems - изображение 551can be expressed as follows in terms of its columns.

(1.82) Kinematics of General Spatial Mechanical Systems - изображение 552

Along with Kinematics of General Spatial Mechanical Systems - изображение 553, Kinematics of General Spatial Mechanical Systems - изображение 554can be expressed as follows in terms of its elements.

(1.83) Kinematics of General Spatial Mechanical Systems - изображение 555

Hence, Eq. (1.81)can be written in a more detailed form as

(1.84) Equation 184leads to the following scalar equations with the indicated - фото 556

Equation (1.84)leads to the following scalar equations with the indicated premultiplications.

(1.85) 186 187 Note that for i 1 - фото 557

(1.86) 187 Note that for i 1 2 3 and j 1 2 3 188 - фото 558

(1.87) Note that for i 1 2 3 and j 1 2 3 188 Thus Eqs 185 - фото 559

Note that, for i ∈ {1, 2, 3} and j ∈ {1, 2, 3},

(1.88) Kinematics of General Spatial Mechanical Systems - изображение 560

Thus, Eqs. (1.85)– (1.87)reduce to the following equations.

(1.89) Kinematics of General Spatial Mechanical Systems - изображение 561

(1.90) Kinematics of General Spatial Mechanical Systems - изображение 562

(1.91) Kinematics of General Spatial Mechanical Systems - изображение 563

Equations (1.89)– (1.91)imply that

(1.92) Kinematics of General Spatial Mechanical Systems - изображение 564

Therefore, if Kinematics of General Spatial Mechanical Systems - изображение 565, Eqs. (1.89)– (1.91)give the elements of as follows 193 194 195 - фото 566as follows:

(1.93) 194 195 Note that the solution obtained - фото 567

(1.94) 195 Note that the solution obtained above is the same as the solution - фото 568

(1.95) Note that the solution obtained above is the same as the solution provided by - фото 569

Note that the solution obtained above is the same as the solution provided by Cramer's rule .

2 Rotation of Vectors and Rotation Matrices

Synopsis

This chapter is devoted to the rotation of vectors and the rotation operators that rotate vectors. The rotation of a vector is expressed both as a vector equation and as a matrix equation written in a selected reference frame. The vector equation is obtained as the Rodrigues formula. The matrix equation is written in terms of the rotation matrix, which is the matrix representation of the rotation operator in the selected reference frame. The expression of the rotation matrix is obtained in terms of the angle of rotation and the unit vector along the axis of rotation. It is shown that the rotation matrix can be expressed very compactly in the exponential form. This chapter also presents the salient mathematical properties of the rotation matrices that can be used conveniently in the symbolic manipulations concerning rotational kinematics. Demonstrative examples are also included.

2.1 Vector Equation of Rotation and the Rodrigues Formula

Figure 2.1illustrates the rotation of a vector картинка 570into another vector картинка 571by an angle θ about an axis described by a unit vector картинка 572.

Incidentally, a vector may be acted upon, simultaneously or successively, by two kinds of displacement operators . One of them is a rotation operator , which is defined as an operator that changes only the orientation of a vector irrespective of any possible change in its location. The other one is a translation operator , which is defined as an operator that changes only the location of a vector without changing its orientation.

As mentioned above, a rotation operator is not affected by any translational displacement. Therefore, without any loss of generality, the rotation of картинка 573is illustrated in Figure 2.1so that the point O (i.e. the tail point of картинка 574) is assumed to be fixed and the rotation axis is assumed to pass through that point. Moreover, as illustrated on the left‐hand side of Figure 2.1, the vector картинка 575moves on the surface of a cone while it is rotated into the vector The projected appearance of this rotation on the base of the mentioned cone - фото 576. The projected appearance of this rotation on the base of the mentioned cone is illustrated on the right‐hand side of Figure 2.1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x