Viele Studienergebnisse weisen mittlerweile darauf hin, dass Ionenkanäle und -pumpen in den Prozess der Krebsentwicklung involviert sind. Ein Beispiel dafür ist der Kaliumkanal EAG ( ether à go-go ), der häufig in Tumorzellen zu finden ist (Becchetti, 2011; Brackenbury et al. , 2008; Kunzelmann, 2005; Pardo et al. , 1999; Pei et al. , 2003; Saito et al. , 1998; Stühmer et al. , 2006). Die Hemmung von Ionenkanälen stellt somit einen interessanten Ansatz für die Krebstherapie dar (Arcangeli et al. , 2009 und 2012). Immer mehr Studien weisen darauf hin, dass für Ionenkanäle codierende Gene Onkogene sind (House et al. , 2010; Onkal und Djamgoz, 2009; Pei et al. , 2003; Roepke et al. , 2010) und dass die Expression bestimmter Ionenkanäle in Tumoren verändert ist (Fiske et al. , 2006; Schönherr, 2005).
Im Anfangsstadium der Tumorentwicklung reguliert das Membranpotential den Zellzyklus und bestimmt das Ausmaß der Zellproliferation (Blackiston et al. , 2009). In der Xenopus-Kaulquappe wurde gezeigt, dass die Depolarisierung einer Zellpopulation zu einem Phänotyp führt, der einem metastasierten Melanom ähnlich ist. Dabei spielte es keine Rolle, welche Art von Ionenkanälen zur Depolarisierung der Zellen benutzt wurden – der Effekt war derselbe, wenn verschiedene Kanäle (Chlorid-, Kalium-, Natrium-, Protonenkanäle) in geeigneter Weise miteinander kombiniert wurden (Blackiston et al. , 2011; Morokuma et al. , 2008).
Auch neuere Daten zeigen, dass die Depolarisierung von Zellen Phänotypen auslöst, die Krebszellen ähneln (Blackiston et al. , 2011; Morokuma et al. , 2008). Lobikin et al. ( 2012) zeigten, dass im Krallenfroschmodell das Spannungspotential der Zellmembran der entscheidende Faktor in der Krebsentstehung und im Metastasierungsverhalten war. Durch die Depolarisierung von sogenannten „ Instructor “-Zellen wurde in Melanozyten ein metastasenbildender Phänotyp induziert und die geordnete Bildung von Blutgefäßen gestört. Nur sehr wenige dieser „ Instructor ”-Zellen müssen für diesen Effekt depolarisiert werden (Lobikin et al. , 2012).
Durch den Einsatz einer karzinogenen Substanz (4-Nitroquinolin-1-oxid) wurden lokalisierte Tumoren erzeugt. Gleichzeitig hatte die Substanz aber auch einen Effekt auf die bioelektrischen Eigenschaften des ganzen Körpers. Dieser Effekt äußerte sich in dem ungewöhnlich hohen Natriumgehalt von Onkogen-induzierten Tumoren, der zur nicht-invasiven Diagnostik herangezogen werden kann. Durch die Expression hyperpolarisierender Ionenkanäle konnte die Tumorentstehung signifikant reduziert werden (Lobikin et al. , 2012).
Es konnte auch gezeigt werden, wie klassische Onkogene über eine Veränderung des Zellmembranpotentials die Tumorentwicklung anstoßen. Depolarisierte Zellmembranen waren für das induzierte Tumorwachstum typisch und weisen darauf hin, dass das Spannungspotential der Zellmembran eine funktionelle Rolle in der Wirkung von Onkogenen auf die maligne Transformation von Zellen hat (Chernet und Levin, 2013).
Die Behandlung mit Butyrat führt bei Krallenfrosch-Kaulquappen, denen ein Onkogen injiziert wurde, zu einer reduzierten Inzidenz tumorähnlicher Strukturen. In einer Studie wurde gezeigt, dass durch eine Hyperpolarisierung höhere intrazelluläre Butyrat-Konzentrationen erreicht werden. D. h., dass der Einstrom von Butyrat in die Zelle an das Membranpotential gekoppelt ist (Chernet und Levin, 2013). Eine weitere Studie zeigt, dass der vom Membranpotential abhängige Transport von Butyrat über den sogenannten SLC5A8-Transporter erfolgt (Gopal et al. , 2004).
Butyrat ist ein potenter Entzündungsmodulator und schützt vor Dickdarmkrebs, weil es unter anderem die Histondeacetylase (HDAC) hemmt. Es kann damit auch wirkungsvoll synergistisch mit Chemotherapien wirken. In Dickdarmkrebszellen wurde eine verminderte Expression des SLC5A8-Transporters festgestellt, was mit einer reduzierten Aufnahme von Butyrat in die Zellen verbunden ist (Coady et al. , 2004; Gupta et al. , 2006; Miyauchi et al. , 2004). Bei einer Fastenketose entsteht vermehrt Hydroxybutyrat, das möglicherweise ähnliche Wirkungen wie Butyrat hat.
Studien weisen zudem auf positive Effekte von Butyrat auf Prostatakrebszellen hin. In einer Studie von Mu und Kollegen (2013) führte die Behandlung von Prostatakrebszellen mit Butyrat zu einer Wachstumshemmung der Zellen. Gleichzeitig wurde die Apoptoserate der Zellen gesteigert. Einer weiteren Studie zufolge sind die Effekte von Butyrat auf die Expression und die Transkriptionsaktivität des Androgenrezeptors (AR) unterschiedlich, je nachdem ob es sich bei den behandelten Zellen um Prostatakrebszellen oder um normale Prostatazellen handelte. Auch Coregulatoren des AR wurden unterschiedlich reguliert: In Prostatakrebszellen hatte Butyrat einen Einfluss auf deren Expression, die transkriptionale Aktivität und die Acetylierung von Histonen, während dieser Effekt in normalen Zellen nur sehr klein war (Paskova et al. , 2013). Damit wirkt Butyrat spezifisch gegen Krebszellen.
3.8.5 Übersäuerung als Kausal- und Cofaktor des Krebsgeschehens
Naturheilkundliche Ärzte behaupten seit Jahrzehnten, dass eine Azidose die Entstehung von Krebs fördert. Inzwischen ist die klinische Bedeutung der latenten Azidose wissenschaftlich gut belegt (z. B. Pizzorno et al. , 2010). Wenig bekannt ist jedoch über die Interaktion von Übersäuerung und Krebs.
Eine Depolarisierung des Membranpotentials kann insbesondere durch eine Übersäuerung des Bindegewebes verursacht werden, da hierbei zunehmend intrazelluläre Kalium-Ionen gegen Protonen getauscht werden und es zu einer intrazellulären Natriumansammlung kommt. Ein saures Milieu schwächt normale Zellen, fördert aber aggressive Krebszellen. Aufgrund des Warburg-Effektes (aerobe Glykolyse) und der mangelnden Durchblutung entwickeln Zellen solider Tumoren eine extrazelluläre Azidose und eine Gewebshypoxie. Hierbei korreliert das Ausmaß der Milchsäureproduktion positiv mit der Malignität und der Radio-/Chemotherapieresistenz des Tumors sowie mit einer schlechten Prognose (Sattler et al. , 2007; Walenta und Mueller-Klieser, 2004). Eine Ausleitung der Milchsäure, die den Tumor vor Immunabwehr, Radio- und Chemotherapie schützt und die Invasion fördert, ist ein zentraler Bestandteil der Krebstherapie.
Messungen bestätigen, dass eine Azidose für die interstitielle Gewebsflüssigkeit solider Tumoren charakteristisch ist. Die meisten Tumoren weisen pH-Werte in einem Bereich von 6,5 - 7,0 auf, es wurden aber auch schon niedrigere Werte von bis zu pH 5,8 gemessen (Tannock und Rotin, 1989).
Ein exzellentes Review von Glitsch (2011), einer deutschen Wissenschaftlerin an der Oxford University , untersucht die These, nach der extrazelluläre Protonen (extrazelluläre Übersäuerung) zur Krebsprogression beitragen. Demnach fördern erhöhte Säurekonzentrationen das Überleben unter den für normale Zellen zunehmend feindlichen Bedingungen der Krebsentwicklung. Die durch die Protonen ausgelöste Expression bestimmter Gene bewirkt eine Aktivierung und/oder Potenzierung von membranständigen Rezeptoren und Kanälen für Protonen. Auf diese Weise kann die Zelle das saure Milieu messen. Zudem wird eine Modulation intrazellulärer Calciumsignalwege ausgelöst (Glitsch, 2011). Die Erhöhung von intrazellulärem Calcium begünstigt die Zellproliferation. Eine Studie an Zellkulturen aus Prostatektomien zeigt, dass in calciumarmen Nährmedien keine Krebszellen, sondern normale Zellen heranwachsen (Dalrymple et al. , 2005). Diese Beobachtung erklärt auch, warum viele Krebserkrankungen gerne im Knochen metastasieren: Der Krebs braucht Calcium.
Читать дальше