Alejandro Garcés Ruiz - Mathematical Programming for Power Systems Operation

Здесь есть возможность читать онлайн «Alejandro Garcés Ruiz - Mathematical Programming for Power Systems Operation» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematical Programming for Power Systems Operation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematical Programming for Power Systems Operation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the theoretical foundations and real-world power system applications of convex programming In
, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations.
The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems.
Mathematical Programming for Power System Operation with Applications in Python A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution,
is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.

Mathematical Programming for Power Systems Operation — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematical Programming for Power Systems Operation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Mathematical Programming for Power Systems Operation

Mathematical Programming for Power Systems Operation

From Theory to Applications in Python

Alejandro GarcésTechnological University of PereiraPereira, Colombia

Mathematical Programming for Power Systems Operation - изображение 1

This edition first published 2022

© 2022 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

A catalogue record for this book is available from the Library of Congress

Paperback ISBN: 9781119747260; ePub ISBN: 9781119747284;

ePDF ISBN: 9781119747277; oBook ISBN: 9781119747291

Cover image: © Redlio Designs/Getty Images

Cover design by Wiley

Set in 9.5/12.5pt STIXTwoText by Integra Software Services Pvt. Ltd, Pondicherry, India

Contents

1 Cover

2 Title page Mathematical Programming for Power Systems Operation Mathematical Programming for Power Systems Operation From Theory to Applications in Python Alejandro GarcésTechnological University of PereiraPereira, Colombia

3 Copyright

4 Table of Contents

5 Acknowledgment

6 Introduction

7 1 Power systems operation1.1 Mathematical programming for power systems operation1.2 Continuous models1.2.1 Economic and environmental dispatch1.2.2 Hydrothermal dispatch1.2.3 Effect of the grid constraints1.2.4 Optimal power flow1.2.5 Hosting capacity1.2.6 Demand-side management1.2.7 Energy storage management1.2.8 State estimation and grid identification1.3 Binary problems in power systems operation1.3.1 Unit commitment1.3.2 Optimal placement of distributed generation and capacitors1.3.3 Primary feeder reconfiguration and topology identification1.3.4 Phase balancing1.4 Real-time implementation1.5 Using Python

8 Part I Mathematical programming 2 A brief introduction to mathematical optimization2.1 About sets and functions2.2 Norms2.3 Global and local optimum2.4 Maximum and minimum values of continuous functions2.5 The gradient method2.6 Lagrange multipliers2.7 The Newton’s method2.8 Further readings2.9 Exercises 3 Convex optimization3.1 Convex sets3.2 Convex functions3.3 Convex optimization problems3.4 Global optimum and uniqueness of the solution3.5 Duality3.6 Further readings3.7 Exercises 4 Convex Programming in Python4.1 Python for convex optimization4.2 Linear programming4.3 Quadratic forms4.4 Semidefinite matrices4.5 Solving quadratic programming problems4.6 Complex variables4.7 What is inside the box?4.8 Mixed-integer programming problems4.9 Transforming MINLP into MILP4.10 Further readings4.11 Exercises 5 Conic optimization5.1 Convex cones5.2 Second-order cone optimization5.2.1 Duality in SOC problems5.3 Semidefinite programming5.3.1 Trace, determinant, and the Shur complement5.3.2 Cone of semidefinite matrices5.3.3 Duality in SDP5.4 Semidefinite approximations5.5 Polynomial optimization5.6 Further readings5.7 Exercises 6 Robust optimization6.1 Stochastic vs robust optimization6.1.1 Stochastic approach6.1.2 Robust approach6.2 Polyhedral uncertainty6.3 Linear problems with norm uncertainty6.4 Defining the uncertainty set6.5 Further readings6.6 Exercises

9 Part II Power systems operation 7 Economic dispatch of thermal units7.1 Economic dispatch7.2 Environmental dispatch7.3 Effect of the grid7.4 Loss equation7.5 Further readings7.6 Exercises 8 Unit commitment8.1 Problem definition8.2 Basic unit commitment model8.3 Additional constraints8.4 Effect of the grid8.5 Further readings8.6 Exercises 9 Hydrothermal scheduling9.1 Short-term hydrothermal coordination9.2 Basic hydrothermal coordination9.3 Non-linear models9.4 Hydraulic chains9.5 Pumped hydroelectric storage9.6 Further readings9.7 Exercises 10 Optimal power flow10.1 OPF in power distribution grids10.1.1 A brief review of power flow analysis10.2 Complex linearization10.2.1 Sequential linearization10.2.2 Exponential models of the load10.3 Second-order cone approximation10.4 Semidefinite approximation10.5 Further readings10.6 Exercises 11 Active distribution networks11.1 Modern distribution networks11.2 Primary feeder reconfiguration11.3 Optimal placement of capacitors11.4 Optimal placement of distributed generation11.5 Hosting capacity of solar energy11.6 Harmonics and reactive power compensation11.7 Further readings11.8 Exercises 12 State estimation and grid identification12.1 Measurement units12.2 State estimation12.3 Topology identification12.4 Y busestimation12.5 Load model estimation12.6 Further readings12.7 Exercises 13 Demand-side management13.1 Shifting loads13.2 Phase balancing13.3 Energy storage management13.4 Further readings13.5 Exercises

10 A The nodal admittance matrix

11 B Complex linearization

12 C Some Python examplesC.1 Basic PythonC.2 NumPyC.3 MatplotLibC.4 Pandas

13 Bibliography

14 Index

15 End User License Agreement

List of Illustrations

1 IntroductionFigure 0.1 Stages of solving an optimization problem.

2 Chapter 1Figure 1.1 Types of optimization models.Figure 1.2 Schematic representation of the variables associated to a...Figure 1.3 Economic dispatch by areas considering network constraints with...Figure 1.4 Vehicle-to-grid concept with an aggregator that centralizes control actions...Figure 1.5 Example of a microgrid with a centralized...Figure 1.6 Set of possible configurations in a three-phase node.Figure 1.7 A possible architecture for implementing an optimization...

3 Chapter 2Figure 2.1 Representation of the sets related to a general optimization problem.Figure 2.2 Three ways to measure the vector...Figure 2.3 Comparison among unit balls defined by norm-2, norm-1, and norm-∞Figure 2.4 Example of local and global optima: a) function with two local minima...Figure 2.5 Example of a function with several optimal points.Figure 2.6 A small photovoltaic system with three solar panels.Figure 2.7 Convergence of the gradient method.Figure 2.8 Intersection of an affine space with a cylinder.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematical Programming for Power Systems Operation»

Представляем Вашему вниманию похожие книги на «Mathematical Programming for Power Systems Operation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematical Programming for Power Systems Operation»

Обсуждение, отзывы о книге «Mathematical Programming for Power Systems Operation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x