Jiyan Dai - Ferroic Materials for Smart Systems

Здесь есть возможность читать онлайн «Jiyan Dai - Ferroic Materials for Smart Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Ferroic Materials for Smart Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Ferroic Materials for Smart Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Presents state-of-the-art knowledge?from basic insights to applications?on ferroic materials-based devices <br> <br> This book covers the fundamental physics, fabrication methods, and applications of ferroic materials and covers bulk, thin films, and nanomaterials. It provides a thorough overview of smart materials and systems involving the interplays among the mechanical strain, electrical polarization, magnetization, as well as heat and light. Materials presented include ferroelectric, multiferroic, piezoelectric, electrostrictive, magnetostrictive, and shape memory materials as well as their composites. The book also introduces various sensor and transducer applications, such as ultrasonic transducers, surface acoustic wave devices, microwave devices, magneto-electric devices, infrared detectors and memories. <br> <br> Ferroic Materials for Smart Systems: Fabrication, Devices and Applications introduces advanced measurement and testing techniques in ferroelectrics, including FeRAM and ferroelectric tunnelling based resistive switching. It also looks at ferroelectricity in emerging materials, such as 2D materials and high-k gate dielectric material HfO2. Engineering considerations for device design and fabrication are examined, as well as applications for magnetostrictive devices. Multiferroics of materials possessing both ferromagnetic and ferroelectric orders is covered, along with ferroelastic materials represented by shape memory alloy and magnetic shape memory alloys. <br> <br> -Brings together physics, fabrication, and applications of ferroic materials in a coherent manner <br> -Discusses recent advances in ferroic materials technology and applications <br> -Covers dielectric, ferroelectric, pyroelectric and piezoelectric materials <br> -Introduces electrostrictive materials and magnetostrictive materials <br> -Examines shape memory alloys and magneto-shape-memory alloys <br> -Introduces devices based on the integration of ferroelectric and ferromagnetic materials such as multiferroic memory device and ME coupling device for sensor applications <br> <br> Ferroic Materials for Smart Systems: Fabrication, Devices and Applications will appeal to a wide variety of researchers and developers in physics, materials science and engineering. <br>

Ferroic Materials for Smart Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Ferroic Materials for Smart Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 1 General Introduction: Smart Materials, Sensors, and Actuators 1.1 Smart System 1.2 Device Application of Ferroelectric Materials 1.3 Device Application of Ferromagnetic Materials 1.4 Ferroelastic Material and Device Application 1.5 Scope of This Book References

3 2 Introduction to Ferroelectrics2.1 What Is Ferroelectrics? 2.2 Origin of Ferroelectrics 2.3 Theory of Ferroelectric Phase Transition 2.4 Ferroelectric Domains and Domain Switching 2.5 Ferroelectric Materials 2.6 Ferroelectric Domain and Phase Field Calculation References

4 3 Device Applications of Ferroelectrics 3.1 Ferroelectric Random‐Access Memory 3.2 Ferroelectric Tunneling Non‐volatile Memory 3.3 Pyroelectric Effect and Infrared Sensor Application 3.4 Application in Microwave Device 3.5 Ferroelectric Photovoltaics 3.6 Electrocaloric Effect References

5 4 Ferroelectric Characterizations 4.1 P–E Loop Measurement 4.2 Temperature‐Dependent Dielectric Permittivity Measurement 4.3 Piezoresponse Force Microscopy (PFM) 4.4 Structural Characterization 4.5 Domain Imaging and Polarization Mapping by Transmission Electron Microscopy References

6 5 Recent Advances in Ferroelectric Research 5.1 Size Limit of Ferroelectricity 5.2 Ferroelectricity in Emerging 2D Materials 5.3 Ferroelectric Vortex 5.4 Molecular Ferroelectrics 5.5 Ferroelectricity in HfO2 and ZrO2 Fluorite Oxide Thin Films 5.6 Ferroic Properties in Hybrid Perovskites References

7 6 Piezoelectric Effect: Basic Theory6.1 General Introduction to Piezoelectric Effect 6.2 Piezoelectric Constant Measurement 6.3 Equivalent Circuit 6.4 Characterization of Piezoelectric Resonator Based on a Resonance Technique References

8 7 Piezoelectric Devices 7.1 Piezoelectric Ultrasonic Transducers 7.2 Ultrasonic Motor 7.3 Surface Acoustics Wave Devices References

9 8 Ferromagnetics: From Material to Device 8.1 General Introduction to Ferromagnetics 8.2 Ferromagnetic Phase Transition: Landau Free‐Energy Theory 8.3 Domain and Domain Wall 8.4 Magnetoresistance Effect and Device 8.5 Magnetostrictive Effect and Device Applications 8.6 Characterizations of Ferromagnetism 8.7 Hall Effect References

10 9 Multiferroics: Single Phase and Composites9.1 Introduction on Multiferroic 9.2 Magnetoelectric Effect 9.3 Why Are There so Few Magnetic Ferroelectrics? 9.4 Single Phase Multiferroic Materials 9.5 ME Composite Materials 9.6 Modeling the Interfacial Coupling in Multilayered ME Thin Film References

11 10 Device Application of Multiferroics 10.1 ME Composite Devices 10.2 Memory Devices Based on Multiferroic Thin Films 10.3 Memory Devices Based on Multiferroic Tunneling References

12 11 Ferroelasticity and Shape Memory Alloy 11.1 Shape Memory Alloy 11.2 Ferromagnetic Shape Memory Alloys References

13 Index

14 End User License Agreement

List of Tables

1 Chapter 2 Table 2.1 Crystallographic classification according to crystal centrosymmetry.

2 Chapter 3Table 3.1 Pyroelectric coefficient of some typical pyroelectric materials.Table 3.2 Pyroelectric figures of merit of some typical pyroelectric materials.Table 3.3 Comparison of the properties of GaAs, MEMS, and BST thin film.

3 Chapter 5Table 5.1 The ferroelectric properties of HfO 2films with various dopants (O: obs...Table 5.2 Calculated properties of four hybrid lead halide perovskites from dens...

4 Chapter 6Table 6.1 Piezoelectric properties of representative piezoelectric materials.Table 6.2 Resonance modes of the five geometries and their related piezoelectric...Table 6.3 The assumption for specific samples ( l – length, w – width, t – thickn...

5 Chapter 7Table 7.1 Acoustic impedances of materials.Table 7.2 Comparison of some piezoelectric materials properties.Table 7.3 Comparison of shear acoustic velocity of substrate materials.

6 Chapter 8Table 8.1 Fundamental properties showing analogies between ferromagnetism and fe...Table 8.2 Properties of magnetostrictive effect of some ferromagnetic materials.

7 Chapter 9Table 9.1 Parameters used in calculating the polarization of the PZT film and PZ...

List of Illustrations

1 Chapter 1 Figure 1.1 AI beats human chess player. Figure 1.2 A cross‐bar structure of synapse and artificial neuron networks bas... Figure 1.3 (a) Photo of a remote control copter and (b) diagram of a PID feedb... Figure 1.4 FEM simulations of three resonant motions in a PZT‐based gyroscope ... Figure 1.5 Diagram showing coupling between different moduli and the clarifica... Figure 1.6 Piezoelectric materials‐based sonar system for car (a) and submarin... Figure 1.7 (a) Transducers and (b) B‐mode image of a wire phantom acquired wit... Figure 1.8 Illustration of concept of a ultrasonic transducer‐based fingerprin... Figure 1.9 A photo of an infrared detector (a) and illustration of its interna... Figure 1.10 Schematic diagram of field‐effect transistor (FET) and the current... Figure 1.11 Schematic diagram of spin valve structure where arrows indicate th... Figure 1.12 Outline of ME device from Virginia Tech and schematic of the cross... Figure 1.13 Phase transition between high temperature austenite phase and low ... Figure 1.14 (a) Brace of orthodontia using shape memory alloys and (b) arthrod...

2 Chapter 2 Figure 2.1 Typical PE loop from a ferroelectric crystal. Insets illustrate do... Figure 2.2 Schematic diagram showing the origin of the electric polarization. Figure 2.3 Relationships of the piezoelectric, ferroelectric, pyroelectric, an... Figure 2.4 Illustration of crystal structure symmetry breaking‐induced ferroel... Figure 2.5 Starting from the original cubic structure (a), if (b) is stabilize... Figure 2.6 In situ Raman spectra of BaTiO 3particles measured at different tem... Figure 2.7 (a) Free energy, (b) dielectric constant and spontaneous polarizati... Figure 2.8 (a) Free energy, (b) dielectric constant and spontaneous polarizati... Figure 2.9 (a) Ferroelectric domain structure in BaTiO 3and (b) cloverleaf dom... Figure 2.10 Illustration of polarization switching by electric field and mecha... Figure 2.11 Illustration of BaTiO 3structures at different temperatures showin... Figure 2.12 Dielectric constant of SrTiO 3single crystal as a function of temp... Figure 2.13 Lattice constant of (Ba xSr 1−x)TiO 3(both bulk and films) as ... Figure 2.14 The phase transition behavior (the dielectric constant as a functi... Figure 2.15 Bias field dependence of (Ba xSr 1−x)TiO 3dielectric constant ... Figure 2.16 (a) Perovskite structure of PbTiO 3in the cubic form above T cand ... Figure 2.17 (a) Typical P–E loop of antiferroelectric and (b) structure ... Figure 2.18 The typical electric displacement verses electric field ( D–E Figure 2.19 PZT phase diagram. The crossover between M Band M Astructures is m... Figure 2.20 (a) Frequency‐dependent relative permittivity and (b) P–E lo... Figure 2.21 Polar mechanisms in relaxor ferroelectric materials as postulated ... Figure 2.22 Piezoresponse force images of various compositions of (001)‐orient... Figure 2.23 SEM image of laminate structure of PMN‐0.35PT crystal (courtesy of... Figure 2.24 Phase diagram of PMN‐ x PT. Figure 2.25 The polarization vectors in pseudocubic perovskite unit cell. The ... Figure 2.26 Schematic illustration of the mechanism of the reversible domain s... Figure 2.27 Two‐dimensional simulation of the structural transformation from c...

3 Chapter 3Figure 3.1 (a) FeRAM device and structural diagram (1T1C) made by Fujitsu, whe...Figure 3.2 Illustration of surface charges generated in a ferroelectric layer ...Figure 3.3 (a) Diagram of the 1T FeRAM based on a field‐effect transistor with...Figure 3.4 Energy band diagram of a ferroelectric tunnel junction. Polarizatio...Figure 3.5 (a) Illustration and (b) voltage dependence of the current density ...Figure 3.6 Out‐of‐plane PFM (a) phase and (b) amplitude measurements on Au/Co/...Figure 3.7 (a) Schematic drawings of the metal/ferroelectric/semiconductor str...Figure 3.8 (a) Tunneling resistance with varying maximum (positive or negative...Figure 3.9 (a) Illustration of in‐plane strain effect and (b) the correspondin...Figure 3.10 Schematic setup of dynamic pyroelectric coefficient measurement sy...Figure 3.11 (a) Diagram of pyroelectric infrared sensor, (b) decreased polariz...Figure 3.12 (a) Basic structure and (b) circuit of a pyroelectric detector.Figure 3.13 Experimental setup for infrared sensor characterization.Figure 3.14 (a) A schematic view of the ferroelectric gate FET, (b) the workin...Figure 3.15 (a) Antenna devices with tunable BST layer acting as a distributed...Figure 3.16 Schematic illustration of the physical mechanism of the photovolta...Figure 3.17 The structure of polymer photovoltaic devices with FE interfacial ...Figure 3.18 Current density–voltage (

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Ferroic Materials for Smart Systems»

Представляем Вашему вниманию похожие книги на «Ferroic Materials for Smart Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Ferroic Materials for Smart Systems»

Обсуждение, отзывы о книге «Ferroic Materials for Smart Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x