9 Chapter 9Figure 9.1 Illustration of multiferroics with expected P–H and M–E Figure 9.2 Relationship between ferroelectrics, ferromagnetics, multiferroics,...Figure 9.3 Ferroelectric hysteresis loops of epitaxial BFO thin films along di...Figure 9.4 (a) Crystal structure of rhombohedral BFO and its ferroelectric pol...Figure 9.5 Domain structures in BFO with (a) 71°, (b) 109°, and (c) 180° domai...Figure 9.6 (a) G‐type antiferromagnetic plane of BFO is perpendicular to the f...Figure 9.7 (a) original polarization, (b) after 71° rotation, (c) after 109° r...Figure 9.8 (a) Schematic diagram of the composite ( t pis the thickness of the ...Figure 9.9 (a) Photograph of a Metglas/PVDF laminate, (b) the unimorph, and (c...Figure 9.10 Temperature‐dependent magnetization in self‐assembled nanostructur...Figure 9.11 (a) Theoretical ME coupling effect in nano and bulk systems with 1...Figure 9.12 (a) Low‐magnification TEM images of 11‐layered PZT/CFO nanocomposi...
10 Chapter 10Figure 10.1 Various laminates operated in longitudinal vibration mode: L‐longi...Figure 10.2 Magnetoelastic–electric equivalent circuit at resonance.Figure 10.3 Schematic diagram of the ME laminate composite device with Terfeno...Figure 10.4 Schematic diagram of an automated ME measurement system.Figure 10.5 (a) Electrical impedance ( Z ) and phase angle ( θ ) spectra for ...Figure 10.6 V ME( V 3is the voltage across the piezoelectric plate) as a functi...Figure 10.7 Magnetoelectric voltage coefficient ME Vas a function of dc bias m...Figure 10.8 Schematic diagram of a stress‐biased PMN‐PT single crystal/Terfeno...Figure 10.9 Frequency dependence of ME vas a function of preloading stress for...Figure 10.10 MERAM based on exchange‐bias coupling between a multiferroic that...Figure 10.11 Schematic, TEM image (inset) and voltage output of an ME read hea...Figure 10.12 Schematic illustration of artificial multiferroic tunnel junction...Figure 10.13 Schematic diagram of low‐field MFTJ.Figure 10.14 Electroresistance change of MFTJ at 40 K for 10 cycles. The corre...Figure 10.15 Magnetism of NiFe and LSMO showing the hysteresis loops.Figure 10.16 (a) Resistance changes with different magnetic fields at 8 K show...
11 Chapter 11Figure 11.1Figure 11.1 Ferroelastic hysteresis and atomic switching in Pb 3(PO 4Figure 11.2 (a) Austenite phase (B2) and (b) martensite lattice structure (B19...Figure 11.3 Lattice cell of NiTi and four martensite variants developed from o...Figure 11.4 A schematic diagram of a typical differential scanning calorimeter...Figure 11.5 Typical transformation–temperature curve of NiTi SMA under constan...Figure 11.6 Shape memory effect in a uniaxial SMA.Figure 11.7 Illustration of (a) one‐way and (b) two‐way memory effects.Figure 11.8 Stress–strain curve illustrating superelastic behavior of SMA when...Figure 11.9 Glasses made of shape memory alloy.Figure 11.10 Illustrations of Ni 2MnGa structured models: (a) 3D cubic structur...Figure 11.11 Schematic illustrations of (a) martensitic transformation and (b)...Figure 11.12 A typical twin variants with the 90° and the 180° magnetic domain...Figure 11.13 Schematic illustrations of a Ni–Mn–Ga single crystal under increa...Figure 11.14 MFIS dependence of applied magnetic field illustrates the change ...Figure 11.15 (a) Schematic diagram of the proposed heterostructure. (b) CME co...
1 Cover
2 Table of Contents
3 Begin Reading
1 iii
2 iv
3 1
4 2
5 3
6 4
7 5
8 6
9 7
10 8
11 9
12 10
13 11
14 12
15 13
16 15
17 16
18 17
19 18
20 19
21 20
22 21
23 22
24 23
25 24
26 25
27 26
28 27
29 28
30 29
31 30
32 31
33 32
34 33
35 34
36 35
37 36
38 37
39 38
40 39
41 40
42 41
43 42
44 43
45 44
46 45
47 46
48 47
49 48
50 49
51 50
52 51
53 52
54 53
55 54
56 55
57 56
58 57
59 58
60 59
61 60
62 61
63 62
64 63
65 64
66 65
67 66
68 67
69 68
70 69
71 70
72 71
73 73
74 74
75 75
76 76
77 77
78 78
79 79
80 80
81 81
82 82
83 83
84 84
85 85
86 86
87 87
88 88
89 89
90 90
91 91
92 92
93 93
94 95
95 96
96 97
97 98
98 99
99 100
100 101
101 102
102 103
103 104
104 105
105 106
106 107
107 108
108 109
109 110
110 111
111 112
112 113
113 114
114 115
115 116
116 117
117 118
118 119
119 120
120 121
121 123
122 124
123 125
124 126
125 127
126 128
127 129
128 130
129 131
130 132
131 133
132 134
133 135
134 136
135 137
136 138
137 139
138 140
139 141
140 142
141 143
142 144
143 145
144 146
145 147
146 148
147 149
148 150
149 151
150 152
151 153
152 154
153 155
154 156
155 157
156 158
157 159
158 160
159 161
160 162
161 163
162 164
163 165
164 166
165 167
166 168
167 169
168 170
169 171
170 172
171 173
172 174
173 175
174 176
175 177
176 178
177 179
178 180
179 181
180 182
181 183
182 184
183 185
184 186
185 187
186 188
187 189
188 190
189 191
190 192
191 193
192 194
193 195
194 197
195 198
196 199
197 200
198 201
199 202
200 203
201 204
202 205
203 206
204 207
205 208
206 209
207 210
208 211
209 212
210 213
211 214
212 215
213 217
214 218
215 219
216 220
217 221
218 222
219 223
220 224
221 225
222 226
223 227
224 228
225 229
226 230
227 231
228 232
229 233
230 234
231 235
232 236
233 237
234 238
235 239
236 240
237 241
238 242
239 243
240 244
241 245
242 247
243 248
244 249
245 250
246 251
247 252
248 253
Ferroic Materials for Smart Systems
From Fundamentals to Device Applications
Jiyan Dai

Author
Prof. Jiyan Dai
The Hong Kong Polytechnic University
Department of Applied Physics
Hung Hom
Kowloon
Hong Kong
Cover
© antoniokhr/Getty Images;
(graph) Courtesy of Professor Jiyan Dai,
The Hong Kong Polytechnic Univeristy
All books published by Wiley‐VCHare carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Читать дальше