Qing-Chang Zhong - Power Electronics-Enabled Autonomous Power Systems

Здесь есть возможность читать онлайн «Qing-Chang Zhong - Power Electronics-Enabled Autonomous Power Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Power Electronics-Enabled Autonomous Power Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Power Electronics-Enabled Autonomous Power Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is <i>a game changer for the grid. It is the sort of breakthrough – like the touch screen in smart phones – that helps to push an industry from one era to the next,</i> as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. <br /><br />As the first book of its kind for power electronics-enabled autonomous power systems, it <br /><br />• introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids <br />• provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability <br />• demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks <br />• highlights the significance of the SYNDEM concept for power systems and beyond <br /><br /><i>Power Electronics-Enabled Autonomous Power Systems</i> is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.

Power Electronics-Enabled Autonomous Power Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Power Electronics-Enabled Autonomous Power Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 List of Figures

3 List of Tables

4 Foreword

5 Preface

6 Acknowledgments

7 About the Author

8 List of Abbreviations

9 Chapter 1: Introduction1.1 Motivation and Purpose 1.2 Outline of the Book 1.3 Evolution of Power Systems 1.4 Summary

10 Part I: Theoretical Framework Chapter 2: Synchronized and Democratized (SYNDEM) Smart Grid 2.1 The SYNDEM Concept 2.2 SYNDEM Rule of Law – Synchronization Mechanism of Synchronous Machines 2.3 SYNDEM Legal Equality – Homogenizing Heterogeneous Players as Virtual Synchronous Machines (VSM) 2.4 SYNDEM Grid Architecture 2.5 Potential Benefits 2.6 Brief Description of Technical Routes 2.7 Primary Frequency Response (PFR) in a SYNDEM Smart Grid 2.8 SYNDEM Roots 2.9 Summary Chapter 3: Ghost Power Theory 3.1 Introduction 3.2 Ghost Operator, Ghost Signal, and Ghost System 3.3 Physical Meaning of Reactive Power in Electrical Systems 3.4 Extension to Complete the Electrical‐Mechanical Analogy 3.5 Generalization to Other Energy Systems 3.6 Summary and Discussions

11 Part II: 1G VSM: Synchronverters Chapter 4: Synchronverter Based Generation 4.1 Mathematical Model of Synchronous Generatorss 4.2 Implementation of a Synchronverter 4.3 Operation of a Synchronverter 4.4 Simulation Results 4.5 Experimental Results 4.6 Summary Chapter 5: Synchronverter Based Loads 5.1 Introduction 5.2 Modeling of a Synchronous Motor 5.3 Operation of a PWM Rectifier as a VSM 5.4 Simulation Results 5.5 Experimental Results 5.6 Summary Chapter 6: Control of Permanent Magnet Synchronous Generator (PMSG) Based Wind Turbines 6.1 Introduction 6.2 PMSG Based Wind Turbines 6.3 Control of the Rotor‐Side Converter 6.4 Control of the Grid‐Side Converter 6.5 Real‐time Simulation Results 6.6 Summary Chapter 7: Synchronverter Based AC Ward Leonard Drive Systems 7.1 Introduction 7.2 Ward Leonard Drive Systems 7.3 Model of a Synchronous Generator 7.4 Control Scheme with a Speed Sensor 7.5 Control Scheme without a Speed Sensor 7.6 Experimental Results 7.7 Summary Chapter 8: Synchronverter without a Dedicated Synchronization Unit 8.1 Introduction 8.2 Interaction of a Synchronous Generator (SG) with an Infinite Bus 8.3 Controller for a Self‐synchronized Synchronverter 8.4 Simulation Results 8.5 Experimental Results 8.6 Benefits of Removing the Synchronization Unit 8.7 Summary Chapter 9: Synchronverter Based Loads without a Dedicated Synchronisation Unit 9.1 Controlling the DC‐bus Voltage 9.2 Controlling the Power 9.3 Simulation Results 9.4 Experimental Results 9.5 Summary Chapter 10: Control of a DFIG Based Wind Turbine as a VSG (DFIG‐VSG) 10.1 Introduction 10.2 DFIG Based Wind Turbines 10.3 Differential Gears and Ancient Chinese South‐pointing Chariots 10.4 Analogy between a DFIG and Differential Gears 10.5 Control of a Grid‐side Converter 10.6 Control of the Rotor‐Side Converter 10.7 Regulation of System Frequency and Voltage 10.8 Simulation Results 10.9 Experimental Results 10.10 Summary Chapter 11: Synchronverter Based Transformerless Photovoltaic Systems 11.1 Introduction 11.2 Leakage Currents and Grounding of Grid‐tied Converters 11.3 Operation of a Conventional Half‐bridge Inverter 11.4 A Transformerless PV Inverter 11.5 Real‐time Simulation Results 11.6 Summary Chapter 12: Synchronverter Based STATCOM without an Dedicated Synchronization Unit 12.1 Introduction 12.2 Conventional Control of STATCOM 12.3 Synchronverter Based Control 12.4 Simulation Results 12.5 Summary Chapter 13: Synchronverters with Bounded Frequency and Voltage 13.1 Introduction 13.2 Model of the Original Synchronverter 13.3 Achieving Bounded Frequency and Voltage 13.4 Real‐time Simulation Results 13.5 Summary Chapter 14: Virtual Inertia, Virtual Damping, and Fault Ride‐through 14.1 Introduction 14.2 Inertia, the Inertia Time Constant, and the Inertia Constant 14.3 Limitation of the Inertia of a Synchronverter 14.4 Reconfiguration of the Inertia Time Constant 14.5 Reconfiguration of the Virtual Damping 14.6 Fault Ride‐through 14.7 Simulation Results 14.8 Experimental Results 14.9 Summary

12 Part III: 2G VSM: Robust Droop Controller Chapter 15: Synchronization Mechanism of Droop Control 15.1 Brief Review of Phase‐Locked Loops (PLLs) 15.2 Brief Review of Droop Control 15.3 Structural Resemblance between Droop Control and PLL 15.4 Operation of a Droop Controller as a Synchronization Unit 15.5 Experimental Results 15.6 Summary 16 Robust Droop Control 16.1 Control of Inverter Output Impedance 16.2 Inherent Limitations of Conventional Droop Control 16.3 Robust Droop Control of R‐inverters 16.4 Robust Droop Control of C‐inverters 16.5 Robust Droop Control of L‐inverters 16.6 Summary 17 Universal Droop Control 17.1 Introduction 17.2 Further Insights into Droop Control 17.3 Universal Droop Controller 17.4 Real‐time Simulation Results 17.5 Experimental Results 17.6 Summary 18 Self‐synchronized Universal Droop Controller 18.1 Description of the Controller 18.2 Operation of the Controller 18.3 Experimental Results 18.4 Real‐time Simulation Results from a Microgrid 18.5 Summary 19 Droop‐Controlled Loads for Continuous Demand Response 19.1 Introduction 19.2 Control Framework with a Three‐port Converter 19.3 An Illustrative Implementation with the ‐converter 19.4 Experimental Results 19.5 Summary 20 Current‐limiting Universal Droop Controller 20.1 Introduction 20.2 System Modeling 20.3 Control Design 20.4 System Analysis 20.5 Practical Implementation 20.6 Operation under Grid Variations and Faults 20.7 Experimental Results 20.8 Summary

13 Part IV: 3G VSM: Cybersync Machines 21 Cybersync Machines 21.1 Introduction 21.2 Passivity and Port‐Hamiltonian Systems 21.3 System Modeling 21.4 Control Framework 21.5 Passivity of the Controller 21.6 Passivity of the Closed‐loop System 21.7 Sample Implementations for Blocks and 21.8 Self‐Synchronization and Power Regulation 21.9 Simulation Results 21.10 Experimental Results 21.11 Summary

14 Part V: Case Studies 22 A Single‐node System 22.1 SYNDEM Smart Grid Research and Educational Kit 22.2 Details of the Single‐Node SYNDEM System 22.3 Summary 23 A 100% Power Electronics Based SYNDEM Smart Grid Testbed 23.1 Description of the Testbed 23.2 Experimental Results 23.3 Summary 24 A Home Grid 24.1 Description of the Home Grid 24.2 Results from Field Operations 24.3 Unexpected Problems Emerged During the Field Trial 24.4 Summary 25 Texas Panhandle Wind Power System 25.1 Geographical Description 25.2 System Structure 25.3 Main Challenges 25.4 Overview of Control Strategies Compared 25.5 Simulation Results 25.6 Summary and Conclusions

15 Bibliography

16 Index

17 End User License Agreement

List of Tables

1 Chapter 1 Table 1.1 Comparison of today's grids, smart grids, and next‐generation smart gr...

2 Chapter 2 Table 2.1 Machines that power the industrial revolutions.

3 Chapter 3Table 3.1 The electrical‐mechanical analogy based on the force–current analogy.

4 Chapter 4Table 4.1 Parameters of the synchronverter for simulations.Table 4.2 Parameters of VSG.Table 4.3 Parameters of VSG2.

5 Chapter 5Table 5.1 Parameters of the rectifier under simulation.

6 Chapter 6Table 6.1 Parameters of a PMSG wind turbine system.Table 6.2 GSC control parameters.Table 6.3 RSC control parameters.

7 Chapter 7Table 7.1 Comparison of different control strategies for AC VSDs.Table 7.2 Parameters of the motor.

8 Chapter 8Table 8.1 Operation modes of a self‐synchronized synchronverter.Table 8.2 Parameters used in simulations and experiments.Table 8.3 Impact on the complexity of the overall controller and the demand for ...

9 Chapter 9Table 9.1 Parameters of the rectifier.Table 9.2 Parameters for controlling the DC‐bus voltage.Table 9.3 Parameters for controlling the the power.

10 Chapter 10Table 10.1 Comparison of different wind power generation systems.Table 10.2 Parameters of the DFIG‐VSG simulated.Table 10.3 Parameters of the experimental DFIG system.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Power Electronics-Enabled Autonomous Power Systems»

Представляем Вашему вниманию похожие книги на «Power Electronics-Enabled Autonomous Power Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Power Electronics-Enabled Autonomous Power Systems»

Обсуждение, отзывы о книге «Power Electronics-Enabled Autonomous Power Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x