Alejandro Garcés Ruiz - Mathematical Programming for Power Systems Operation

Здесь есть возможность читать онлайн «Alejandro Garcés Ruiz - Mathematical Programming for Power Systems Operation» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematical Programming for Power Systems Operation: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematical Programming for Power Systems Operation»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the theoretical foundations and real-world power system applications of convex programming In
, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations.
The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems.
Mathematical Programming for Power System Operation with Applications in Python A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution,
is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.

Mathematical Programming for Power Systems Operation — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematical Programming for Power Systems Operation», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.3 Global and local optimum

Let us consider a mathematical optimization problem represented as ( Equation 2.22).

Mathematical Programming for Power Systems Operation - изображение 58(2.22)

where f : картинка 59 n→ картинка 60is the objective function, x are decision variables, Ω is the feasible set, and β are constant parameters of the problem.

A point x~ is a local optimum of the problem, if there exists an open set N(x~), named neighborhood, that contains x~ such that f(x)≥f(x~),∀x∈N(x~). If N=Ω then, the optimum is global. Figure 2.4 shows the concept for two functions in R with their respective neighborhoods N.

Figure 24 Example of local and global optima a function with two local - фото 61

Figure 2.4 Example of local and global optima: a) function with two local minima and their respective neighborhoods, b) function with a unique global minimum (the neighborhood is the entire domain of the function).

There are two local minima in the first case, whereas there is a unique global minimum in the second case. This concept is more than a fancy theoretical notion; what good is a local optimum if there are even better solutions in another region of the feasible set? In practice, we require global or close-to-global optimum solutions.

On the other hand, several points may be optimal, as shown in Figure 2.5. In that case, all the points in the interval x 1≤ xx 2are global optima. Thus, the question is not only if the optimal point is global but also if it is unique. Both globality and uniqueness are geometrical questions with practical implications, especially in competitive markets. Convex optimization allows naturally answering these questions as explained in Chapter 3

Figure 25 Example of a function with several optimal points 24 Maximum and - фото 62

Figure 2.5 Example of a function with several optimal points.

2.4 Maximum and minimum values of continuous functions

It is well-known, from basic mathematics, that the optimum of a continuous differentiable function is attached when its derivative is zero. This fact can be formalized in view of the concepts presented in previous sections. Consider a function f : картинка 63Mathematical Programming for Power Systems Operation - изображение 64with a local minimum in x~. A neighborhood is defined as N={x∈R:x=x~±t,|t|

Mathematical Programming for Power Systems Operation - изображение 65(2.23)

where t can be positive or negative. If t > 0, then ( Equation 2.23) can be divided by t without modifying the direction of the inequality, to then take the limit when t→0+ t → 0+ as presented below:

224 The same calculation can be made if t 0 just in that case the - фото 66(2.24)

The same calculation can be made if t < 0, just in that case, the direction of the inequality changes as follows:

225 Notice that this limit is the definition of derivative hence fx0 - фото 67(2.25)

Notice that this limit is the definition of derivative; hence, f′(x~)≥0 and f′(x~)≤0 These two conditions hold simultaneously when f′(x~)=0. Consequently, the optimum of a differentiable function is the point where the derivative vanishes. This condition is local in the neighborhood N.

This idea can be easily extended to multivariable functions as follows: consider a function f:Rn→R (continuous and differentiable) and a neighborhood given by N={x∈Rn:x=x~+Δx} Now, define a function g(t)=f(x~+tΔx) If x~ is a local minimum of f , then

Mathematical Programming for Power Systems Operation - изображение 68(2.26)

In terms of the new function g , ( Equation 2.26) leads to the following condition:

227 This condition implies that 0 is a local optimum of g moreover - фото 69(2.27)

This condition implies that 0 is a local optimum of g ; moreover,

228 Notice that g is a function of one variable then optimal condition g - фото 70(2.28)

Notice that g is a function of one variable, then optimal condition g ′ = 0 is met, regardless the direction of Δ x . Therefore, the optimum of a multivariate function is given when the gradient is zero ∇f(x~)=0). This condition permits to find local optimal points, as presented in the next section. Two questions are still open: in what conditions are the optimum global? And, when is the solution unique? We will answer these relevant questions in the next chapter. For now, let us see how to find the optimum using the gradient.

2.5 The gradient method

The gradient method is, perhaps, the most simple and well-known algorithm for solving optimization problems. Cauchy invented the basic method in the 19th century, but the computed advent leads to different applications that encompass power systems operation and machine learning. Let us consider the following unconstrained optimization problem:

картинка 71(2.29)

where the objective function f : картинка 72 n→ картинка 73is differentiable. The gradient ∇ f ( x ) represents the direction of greatest increase of f . Thus, minimizing f implies to move in the direction opposite to the gradient. Therefore, we use the following iteration:

Mathematical Programming for Power Systems Operation - изображение 74(2.30)

The gradient method consists in applying this iteration until the gradient is small enough, i.e., until ‖∇ f ( x )‖ ≥ ϵ. It is easier to understand the algorithm by considering concrete problems and their implementation in Python, as given in the next examples.

Example 2.4

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematical Programming for Power Systems Operation»

Представляем Вашему вниманию похожие книги на «Mathematical Programming for Power Systems Operation» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematical Programming for Power Systems Operation»

Обсуждение, отзывы о книге «Mathematical Programming for Power Systems Operation» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x