Bruno D´Amore - La Didáctica y la Dificultad en Matemática

Здесь есть возможность читать онлайн «Bruno D´Amore - La Didáctica y la Dificultad en Matemática» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на испанском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

La Didáctica y la Dificultad en Matemática: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «La Didáctica y la Dificultad en Matemática»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Con este libro se quiere indagar sobre las motivaciones didácticas, no psicológicas ni clínicas, que pueden estar en la base de amplias y diferentes dificultades que se manifiestan en los estudiantes cuando se intenta el aprendizaje de la matemática. Los autores, mediante los resultados de la investigación en didáctica de la matemática, evidencian tres tipologías diferentes (y no independientes) del origen de la dificultad: la teoría de los obstáculos, misconcepciones y el contrato didáctico, ofreciéndolos a los docentes como instrumento para indagar la situación del aula y para analizar la específica dificultad de los estudiantes.

La Didáctica y la Dificultad en Matemática — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «La Didáctica y la Dificultad en Matemática», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ejemplo 1: Área y perímetro

Tanto el libro de Fandiño Pinilla, D’Amore (2007) como en las investigaciones que lo precedieron y lo hicieron posible (citadas en el libro), se evidencian errores de los estudiantes en la evaluación de las relaciones entre el área y el perímetro de figuras planas. No entraremos en mayores detalles. Nos limitaremos a decir que, por ejemplo, muchos estudiantes están convencidos del hecho de que, si dos figuras A y B tienen el mismo perímetro, entonces también tendrán la misma área.

Una investigación efectuada con los docentes de estos mismos estudiantes ha mostrado ampliamente que este preconcepto albergaba también en ellos; y esgrimen como excusa el hecho de no haber tenido más información o cursos específicos que negaran esta aparente obvia verdad16. Como se ve, de un lado las convicciones de los docentes influencian significativamente las de los estudiantes;17 y, del otro, la voluntad que existe de modificar sus propias convicciones, incluso el tipo de contenido.

Entonces, ¿cómo intervenir en este «error» específico? Primero verificando bien la transposición didáctica y la ingeniería didáctica, verificando casos posibles de errores de interpretación en la comunicación, no sólo de aquellas explícitas, sino también de aquellas implícitas y que a veces dejan una marca mayor.

Ejemplo 2: Fracciones

Tanto en el libro de Fandiño Pinilla (2005a), como en los trabajos de investigación que lo precedieron (que se mencionan en la bibliografía), como en los trabajos de investigación que lo siguieron (véase, por ejemplo, Campolucci, Fandiño Pinilla, Maori, Sbaragli, 2006), se evidencian infinidades de «errores» específicos hechos por los estudiantes que la literatura ha estudiado por décadas, clasificándolos desde un punto de vista netamente matemático y, por tanto, sin grandes éxitos didácticos.

Las investigaciones preliminares y tal vez, incluso más, las sucesivas, como la indicada, han mostrado ampliamente una vez más como los errores de los estudiantes tienen motivaciones y causas que residen en las convicciones de los docentes.

Por ejemplo, muy pocos de los docentes entrevistados han reflexionado sobre el hecho de que el típico «igual» que se menciona en la definición de las fracciones, cuando, precisamente, una unidad se divide en partes «iguales», es un término genérico que va interpretado según el contexto, por lo menos 12 contextos diferentes que el primer libro evidencia.

Por ejemplo, si se trata de dividir una figura plana en partes «iguales» en realidad quiere decir «equi-extensas»; si se divide un conjunto de personas en partes «iguales» en realidad se refiere sólo al número; si se divide un número en partes iguales, entonces se trata de realizar una operación de división (y a menudo es incierto si se habla de N o de Q, dado que en N la operación de división no es interna); si se divide una pizza en partes iguales, se hace referencia a una división abstracta que está fuera del contexto concreto al cual se recurre del objeto «pizza», porque «iguales» aquí tiene poco sentido concreto: nadie cortaría una pizza, por ejemplo, con un corte paralelo al plano del plato sobre el cual descansa, y nadie espera que las dos rebanadas de pizza obtenidas por un corte concreto, sean realmente «iguales» etc.

Las consideraciones que a este punto pueden seguir son totalmente idénticas a las hechas al final del ejemplo anterior y, por tanto, las omitimos.

Tendremos que hablar por mucho tiempo de la relación entre los conceptos (correctos) que se esperan del proceso de enseñanza - aprendizaje de la matemática y los misconceptos que se crean en la mente de los estudiantes o pre-existentes en la mente de los docentes. Muchos de estos serían ejemplos oportunos que podrían ser presentados aquí; sin embargo, el Capítulo 3 se dedica específicamente a este tema, con gran riqueza de ejemplos.

Pero volvamos a los métodos para remediar este estado de cosas.

El estudio cognitivo de los conocimientos reales de los estudiantes en un cierto dominio del saber matemático necesita de un análisis profundo y no basta una sola prueba o un sólo test, para llegar a una conclusión en este campo; valga para todos el siguiente ejemplo.

Niños de 5 años se colocan delante de una mesa sobre la cual se colocan 5 tacitas dispuestas en línea recta delante de los niños y 5 platitos, cada uno delante de una taza, por lo tanto, más cerca del grupo de niños.

Se pregunta a los niños: «¿Hay más tacitas o más platitos?». En el coro y sin duda alguna, cada uno a su manera, responden que las dos cantidades son iguales.

Ahora, ante la atenta mirada de los niños, dejando inmóviles los platitos, se dispersan las tacitas en la parte de la mesa comprendida entre los platitos y los niños, de modo tal que ocupen una superficie visiblemente más amplia que la anterior.

En este punto, se pregunta a los niños: «Y ahora, ¿hay más tacitas o más platitos?», con énfasis en las palabras en cursiva. En coro, sin duda alguna, los niños responden que hay más tacitas.

Hipótesis A: Fin de la actividad.

Conclusión: los niños confunden la cantidad numérica con el espacio ocupado o con el movimiento producido o con la abundancia de energía… y así sucesivamente.

Hipótesis B: La actividad prosigue.

Ante la mirada atenta de los niños, dejando siempre inmóviles los platitos, se disponen las tacitas exactamente igual a como estaban al comienzo, todas alineadas frente a su platito.

En este punto, se pregunta a los niños: «Y ahora, ¿hay más tacitas o más platitos?», haciendo énfasis en las palabras en cursiva. En el coro, sin ninguna duda, los niños responden, cada uno a su manera, que hay tantas tacitas como platitos.

Ahora, de nuevo, ante la atenta mirada de los niños, dejando siempre inmóviles los platitos, se esparcen las tacitas en la parte de la mesa entre los platitos y los niños, de modo de que las tacitas ocupen una superficie mucho mayor.

En este punto se pide una vez más a los niños: «Y ahora, ¿hay más tacitas o más platitos?», siempre haciendo énfasis en las palabras en cursiva. Y aquí, sucede el hecho nuevo: mientras todavía algún niño dirá que hay más tacitas, una gran parte de ellos, sin embargo, afirmará que las dos cantidades son iguales.

El aprendizaje ha ocurrido, ahora basta dejarlos hacer, dejar que el debate venga de inmediato, para que los niños aprendan de sus compañeros, como es justo y es más eficaz (Vigotsky, 1956-1962 -1977; en: 1977, cap. IV).

La pregunta insidiosa y provocadora es: ¿está bien detenerse en el punto A, o es mejor seguir, como en el punto B?18

El pseudo-error específico debido al cual los niños asignan a las tacitas esparcidas una mayor cantidad, hecho que se puede explicar de muchas maneras diferentes (el tipo de solicitud, el hecho de ampliarse el espacio ocupado, energía excesiva utilizada etc.), es fácilmente superado con un cuidadoso análisis de la situación.

Era lo que queríamos evidenciar: el error en sí mismo dice poco, es el análisis que el docente es capaz de hacer el que revela las causas y, como consecuencia, a veces, sugiere la recuperación.

Entre los factores que se deben tener en cuenta, hay otros de gran interés.

Uno de estos tiene que ver con la diferencia entre las expectativas del docentes y las expectativas del estudiante.

Un ejemplo.

A la propuesta del ejercicio: «Un pastor tiene 12 ovejas y 6 cabras; ¿cuántos años tiene el pastor?», muchísimos niños en el aula responden: 18 (D’Amore, 1993b; D’Amore, 1999) (pero sobre el contrato didáctico volveremos en el Capítulo 4).

La «lógica» con la cual el adulto ha construido esta prueba es más o menos la siguiente: veamos si cualquier niño es capaz de romper el contrato didáctico y responder cualquier cosa del tipo: «Este problema no se puede resolver» o algo similar. Pero, una vez que el investigador pregunta a un niño que gritaba convencido hasta quedar sin aliento «18», cómo justificaba su respuesta, el niño responde: «Porque hice la “suma”». La lógica de las expectativas adultas y aquella del resultado del niño son radicalmente diferentes. De la primera habíamos hablado y es obvia, de la segunda diremos que el niño se limita a elegir la operación que espera sea la expectativa del investigador, totalmente desinteresado de la lógica adulta sobre la cual se ha construido el problema. Pero a ese mismo niño, el investigador le pregunta, «¿Por qué hiciste la “suma” y no la “división”?», ayudado por el lenguaje espontáneo del niño; en aquel punto, después de haber pensado un poco, acompañando la respuesta con una radiante sonrisa, el niño responde: «No! Sería demasiado pequeño!». El sentido es obvio: se está refiriendo a una improbable edad de un pastor, inconcebible. Sólo con esta última pregunta, el niño está obligado a dar un sentido a su propia respuesta. No antes. Al comparar los dos resultados, el de la “suma” que le da 18 y el de la “división” que da 2, sólo a este punto se toma en consideración la edad del pastor, la lógica cambia entonces y se convierte: Haciendo las operaciones que yo conozco, ¿cuál de las dos da un resultado más confiable a la respuesta, es decir, una posible edad de un pastor?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «La Didáctica y la Dificultad en Matemática»

Представляем Вашему вниманию похожие книги на «La Didáctica y la Dificultad en Matemática» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «La Didáctica y la Dificultad en Matemática»

Обсуждение, отзывы о книге «La Didáctica y la Dificultad en Matemática» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x