Joel P. Dunsmore - Handbook of Microwave Component Measurements

Здесь есть возможность читать онлайн «Joel P. Dunsmore - Handbook of Microwave Component Measurements» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Microwave Component Measurements: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Microwave Component Measurements»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Handbook of Microwave Component Measurements

Handbook of Microwave Component Measurements — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Microwave Component Measurements», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Recently more advanced techniques have been developed and made practical based on incident noise power and gain. If the impedance is known, the incident noise power can be computed as in Eq. (1.59); and if the output incident noise power N OEcan be measured, then one can compute the output available noise as

(1.60) Substituting into Eq 157to find 161 When the source is a matched - фото 73

Substituting into Eq. (1.57)to find

(1.61) When the source is a matched source this simplifies to 162 Thus for a - фото 74

When the source is a matched source, this simplifies to

(1.62) Thus for a simple system of an amplifier sourced with a Z 0impedance and - фото 75

Thus, for a simple system of an amplifier sourced with a Z 0impedance and terminated with a Z 0load, the noise factor can be computed simply from the noise power measured in the load and the S21 gain. However, Eq. (1.61)defines the noise figure of the amplifier in terms of the source impedance, and this is a key point. In general, although the 50 Ω noise figure is the most commonly quoted, it is measured only when the source impedance provided is exactly 50 Ω. In the case where the source impedance is not 50 Ω, the 50‐Ω noise figure cannot be simply determined.

1.5.1 Noise Temperature

Because of the common factor of temperature in many noise figure computations, the noise power is sometimes redefined as available noise temperature.

(1.63) Handbook of Microwave Component Measurements - изображение 76

From this definition, the noise factor becomes

(1.64) where T RNAis the relative available noise temperature expressed in Kelvin - фото 77

where T RNAis the relative available noise temperature, expressed in Kelvin above 290 K.

1.5.2 Effective or Excess Input Noise Temperature

For very low noise figure devices, it is often convenient to express their noise factor or noise figure in terms of the excess power that would be at the input due to a higher temperature generator termination, which would result in the same available noise temperature at the output. This can be computed as

(1.65) Handbook of Microwave Component Measurements - изображение 78

Thus, an ideal noiseless network would have a zero input noise temperature, and a 3 dB noise figure amplifier would have a 290 K excess input noise temperature, or 290 K above the reference temperature.

1.5.3 Excess Noise Power and Operating Temperature

For an amplifier under test, the noise power at the output, relative to the kTB noise power, is called the excess noise power , P NE, and is computed as

(1.66) Handbook of Microwave Component Measurements - изображение 79

For a matched source and load, it is the excess noise, above kTB, that is measured in the terminating resistor and can be computed as

(1.67) Handbook of Microwave Component Measurements - изображение 80

which is sometimes called the incident relative noise or RNP I(as opposed to available, or RNP). Errors in noise figure measurement are often the result of not accounting properly for the fact that the source or load impedances are not exactly Z 0. A related parameter is the operating temperature, which is analogous to the input noise temperature at the amplifier output, and is computed as

(1.68) Handbook of Microwave Component Measurements - изображение 81

While the effect of load impedance may be overcome with the use of available gain, which is independent of load impedance, the effect of source impedance mismatch must be dealt with a much more complicated way, as shown next.

1.5.4 Noise Power Density

The excess noise is measured relative to the kTB noise floor and is expressed in dBc relative to the T 0noise floor. However, the noise power could also be expressed in absolute terms such as dBm. But the measured noise power depends upon the bandwidth of the detector, and so the noise power density provides a reference value with a bandwidth equivalent to 1 Hz. Thus, the noise power density is the related to the excess noise by

(1.69) 155 Noise Parameters The formal definition of noise figure for an amplifier - фото 82

1.5.5 Noise Parameters

The formal definition of noise figure for an amplifier defines the noise figure only for the impedance or reflection coefficient of current source termination, but this noise figure is not the 50‐Ω noise figure. Rather, it is the noise figure of the amplifier for the impedance of the source. In general, one cannot compute the 50 Ω noise figure from this value without additional information about the amplifier. If one considers the amplifier in Figure 1.5, with internal noise sources, the effect of the noise sources is to produce noise power waves that may be treated similarly to normalized power waves, a and b .

Figure 15 An amplifier with internal noise sources The source termination - фото 83

Figure 1.5 An amplifier with internal noise sources.

The source termination produces an incident noise wave a NSand adds to the internal noise created in the amplifier, which can be represented as an input noise source a Namp. There are scattered noise waves represented by the noise emitted from the input of the amplifier, b N1, and the noise incident on the load is b N2. From this figure, one can make a direct comparison to the S‐parameters and see that reflected noise power might add or subtract to the incident noise power and affect the total noise power. However, at the input of the amplifier, the noise generated inside the amplifier is in general not correlated with the noise coming from the source termination so that they don't add together in a simple way. Because of this, the noise power at the output of the amplifier, and therefore the noise figure, depends upon the source impedance in a complex way. This complex interaction is defined by two real valued parameters and one complex parameter, known collectively as the noise parameters . The noise figure at any source reflection coefficient may be computed as

(1.70) where N Fminis the minimum noise figure Γ Opt called gammaopt is the - фото 84

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Microwave Component Measurements»

Представляем Вашему вниманию похожие книги на «Handbook of Microwave Component Measurements» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Microwave Component Measurements»

Обсуждение, отзывы о книге «Handbook of Microwave Component Measurements» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x