Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations

Здесь есть возможность читать онлайн «Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

An Introduction to the Finite Element Method for Differential Equations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «An Introduction to the Finite Element Method for Differential Equations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the finite element method with this masterful and practical volume
An Introduction to the Finite Element Method (FEM) for Differential Equations
An Introduction to the Finite Element Method

An Introduction to the Finite Element Method for Differential Equations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «An Introduction to the Finite Element Method for Differential Equations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As we mentioned, a key defining property of a PDE is that there are derivatives with respect to more than one independent variable and a PDE is a relation between an unknown function An Introduction to the Finite Element Method for Differential Equations - изображение 134and its partial derivatives:

(1.3.1) Example 110 The onespace dimensional homogeneous heat and wave equations - фото 135

Example 1.10

The one‐space dimensional, homogeneous, heat, and wave equations (here are among the simplest PDEs Other examples are The most - фото 136) are among the simplest PDEs:

Other examples are The most general PDE of first order in two independent - фото 137

Other examples are

The most general PDE of first order in two independent variables and is o - фото 138

The most general PDE of first order in two independent variables, and is of the form 132 Likewise the most general PDE of se - фото 139and is of the form 132 Likewise the most general PDE of second order in two - фото 140is of the form

(1.3.2) Likewise the most general PDE of second order in two independent variables can - фото 141

Likewise, the most general PDE of second order in two independent variables can be written as

(1.3.3) As stated in Remark 12 when Eqs 131 133 are considered in bounded - фото 142

As stated in Remark 1.2, when Eqs. ( 1.3.1)–( 1.3.3) are considered in bounded domains картинка 143, in order to obtain a unique solution one should supply boundary conditions : conditions at the boundary of the domain картинка 144, denoted, e.g. by картинка 145or картинка 146(as well as conditions for картинка 147, initial conditions; denoted, e.g. by картинка 148or картинка 149; in the time‐dependent cases), as in the theory of ODEs. картинка 150and картинка 151are expressions of картинка 152and its partial derivatives, stated on the whole or a part of the boundary of картинка 153(or, in case of картинка 154, for картинка 155), and are associated with the underlying PDE. Below we shall discuss the choice of relevant initial and boundary conditions for a PDE.

A solution of a PDE of type ( 1.3.1)–( 1.3.3) is a function An Introduction to the Finite Element Method for Differential Equations - изображение 156that identically satisfies the corresponding PDE, and the associated initial and boundary conditions, in some region of the variables An Introduction to the Finite Element Method for Differential Equations - изображение 157, or картинка 158(and картинка 159). Note that a solution of an equation of order картинка 160has to be картинка 161times differentiable. A function in картинка 162that satisfies a PDE of order картинка 163is called a classical (or strong) solution of the PDE. We sometimes also have to deal with solutions that are not classical. Such solutions are called weak solutions . In this note, in the variational formulation for FEMs, we actually deal with weak solutions. For a more thorough discussion on weak solutions, see Chapter 2 or any textbook in distribution theory.

Definition 1.2 Hadamard's criteria; compare with the three criteria in theory

A problem consisting of a PDE associated with boundary and/or initial conditions is called well‐posed if it fulfills the following three criteria:

1 Existence The problem has a solution.

2 Uniqueness There is no more than one solution.

3 Stability A small change in the equation or in the side (initial and/or boundary) conditions gives rise to a small change in the solution.

If one or more of the conditions abovementioned does not hold, then we say that the problem is ill‐posed . The fundamental theoretical question of PDEs is whether the problem consisting of the equation and its associated side conditions is well‐posed. However, in certain engineering applications, we might encounter problems that are ill‐posed. In practice, such problems are unsolvable. Therefore, when we face an ill‐posed problem, the first step should be to modify it appropriately in order to render it well‐posed.

Definition 1.3

An equation is called linear if in ( 1.3.1), картинка 164is a linear function of the unknown function and its derivatives Thus for example the equation is a linear equation while - фото 165and its derivatives.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «An Introduction to the Finite Element Method for Differential Equations»

Представляем Вашему вниманию похожие книги на «An Introduction to the Finite Element Method for Differential Equations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «An Introduction to the Finite Element Method for Differential Equations»

Обсуждение, отзывы о книге «An Introduction to the Finite Element Method for Differential Equations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x