Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations

Здесь есть возможность читать онлайн «Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

An Introduction to the Finite Element Method for Differential Equations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «An Introduction to the Finite Element Method for Differential Equations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the finite element method with this masterful and practical volume
An Introduction to the Finite Element Method (FEM) for Differential Equations
An Introduction to the Finite Element Method

An Introduction to the Finite Element Method for Differential Equations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «An Introduction to the Finite Element Method for Differential Equations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The usual three types of boundary conditions.

1 Dirichlet boundary conditionHere, the solution is known at the boundary of the domain, asThis is the case, for example, describing a fixed temperature at the boundary.

2 Neumann boundary conditionIn this case, the derivative of the solution in certain direction is given:,where is, e.g. the outward unit normal to at and

3 Robin boundary condition (a combination of 1 and 2),In a homogeneous case, i.e. for , Robin condition means that the heat flux through the boundary is proportional to the temperature (in fact the temperature difference between the inside and outside) at the boundary.Example 1.8In two dimensions, with and hence, for , we have , see Figure 1.2. Figure 1.2Outward unit normal at a point .Example 1.9Let . We determine the normal derivative of in (the assumed normal) direction . The gradient of is the vector valued function , where and are the unit orthonormal basis in : and . Note that is not a unit vector. The normalized is obtained as , i.e.Thus, which givesThe usual three criteria to deal with1) In theoryA given differential equation problem is called well‐posed if the following three conditions hold true:I1. Existence: there exists at least one solution .I2. Uniqueness: we have either one solution or no solutions at all.I3. Stability: the solution depends continuously on the data.Note: A property that concerns behavior, such as growth or decay, or perturbations of a solution as time increases is generally called a stability property.2) In applicationsII1. Construction: exact design of the solution.II2. Regularity: how smooth is the found solution.II3. Approximation: when an exact construction is not possible.

Three general approaches for solving differential equations

1 Separation of variables method: The separation of variables technique reduces the (PDEs) to simpler EVPs (ODEs). This method is known as Fourier method, or solution by eigenfunction expansion.

2 Variational formulation method: Variational formulation or the multiplier method is a strategy for extracting information by multiplying a differential equation by suitable test functions and then integrating (e.g. like Fourier or Laplace transforms). This is also referred to as The Energy Method. A discrete version of this is the subject of our study.

3 Green's function method: Fundamental solutions, or solution of integral equations, which we have briefly addressed in the chapter of mathematical tools is the subject of an advanced PDE course.

1.3 PDEs in, Further Classifications

In this section, we extend the overture of the Sections 1.1and 1.2to higher dimensions and give definitions for linearity, nonlinearity, and superposition concepts.

We recall the common notation for the real Euclidean spaces of dimension with the elements In most of the - фото 102for the real Euclidean spaces of dimension with the elements In most of the applications will be - фото 103with the elements In most of the applications will be or 4 and the variables - фото 104. In most of the applications, An Introduction to the Finite Element Method for Differential Equations - изображение 105will be An Introduction to the Finite Element Method for Differential Equations - изображение 106, or 4 and the variables An Introduction to the Finite Element Method for Differential Equations - изображение 107denote coordinates in space dimensions, whereas An Introduction to the Finite Element Method for Differential Equations - изображение 108represents the time variable. In this case, we usually replace An Introduction to the Finite Element Method for Differential Equations - изображение 109by the most common notation: Further we shall use the subscript notation for the partial derivatives - фото 110. Further, we shall use the subscript notation for the partial derivatives, viz.

A more general notation for partial derivatives of a sufficiently smooth - фото 111

A more general notation for partial derivatives of a sufficiently smooth function An Introduction to the Finite Element Method for Differential Equations - изображение 112(see Definition 1.1 below) is given by

An Introduction to the Finite Element Method for Differential Equations - изображение 113

where An Introduction to the Finite Element Method for Differential Equations - изображение 114, denotes the partial derivative of order An Introduction to the Finite Element Method for Differential Equations - изображение 115with respect to the variable An Introduction to the Finite Element Method for Differential Equations - изображение 116, and An Introduction to the Finite Element Method for Differential Equations - изображение 117is a multi‐index of integers An Introduction to the Finite Element Method for Differential Equations - изображение 118with An Introduction to the Finite Element Method for Differential Equations - изображение 119.

Definition 1.1

A function картинка 120of one real variable is said to be of class An Introduction to the Finite Element Method for Differential Equations - изображение 121on an open interval An Introduction to the Finite Element Method for Differential Equations - изображение 122if its derivatives An Introduction to the Finite Element Method for Differential Equations - изображение 123exist and are continuous on картинка 124. A function картинка 125of картинка 126real variables is said to be of class картинка 127on a set An Introduction to the Finite Element Method for Differential Equations - изображение 128if all of its partial derivatives of order An Introduction to the Finite Element Method for Differential Equations - изображение 129, i.e. An Introduction to the Finite Element Method for Differential Equations - изображение 130with the multi‐index An Introduction to the Finite Element Method for Differential Equations - изображение 131and картинка 132, exist and are continuous on картинка 133.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «An Introduction to the Finite Element Method for Differential Equations»

Представляем Вашему вниманию похожие книги на «An Introduction to the Finite Element Method for Differential Equations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «An Introduction to the Finite Element Method for Differential Equations»

Обсуждение, отзывы о книге «An Introduction to the Finite Element Method for Differential Equations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x