Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations

Здесь есть возможность читать онлайн «Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

An Introduction to the Finite Element Method for Differential Equations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «An Introduction to the Finite Element Method for Differential Equations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the finite element method with this masterful and practical volume
An Introduction to the Finite Element Method (FEM) for Differential Equations
An Introduction to the Finite Element Method

An Introduction to the Finite Element Method for Differential Equations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «An Introduction to the Finite Element Method for Differential Equations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.4.1 Exercises

1 Problem 1.1 Consider the problemClearly, the function is a solution. Is this solution unique? Does the answer depend on ?

2 Problem 1.2 Consider the problemIs the solution unique? ( is a given function).Under what condition on a solution exists?

3 Problem 1.3 Suppose are solutions of the linear differential equation , where . Under what condition on the constant coefficients is the linear combination also a solution of this equation?

4 Problem 1.4 Consider the nonlinear ODE .Show that and both are solutions, but is not a solution.For which value of is a solution? What about ?

5 Problem 1.5 Show that each of the following equations has a solution of the form for a proper choice of constants . Find the constants for each example.

6 Problem 1.6Consider the equation . Write the equation in the coordinates .Find the general solution of the equation.Consider the equation . Write it in the coordinates and .

7 Problem 1.7Show that for satisfiesFind a linear combination of s that satisfies .Solve the Dirichlet problem

1.5 Some Equations of Mathematical Physics

Throughout the book, we focus on the study of some of the basic PDEs of mathematical physics. These equations involve differential operators as the gradient and Laplacian , acting on An Introduction to the Finite Element Method for Differential Equations - изображение 238:

(1.5.1) These equations describe fundamental physical phenomena as follows 152 - фото 239

These equations describe fundamental physical phenomena as follows:

(1.5.2) Here is a given function In the special case when ie when Eq - фото 240

Here картинка 241is a given function. In the special case, when картинка 242, i.e. when Eq. ( 1.5.2) are homogeneous , the first equation is called the Laplace equation and, being time‐independent, has some special features: besides the fact that it describes the steady‐state heat transfer and the standing wave equations (loosely speaking, the time‐independent versions of the other two equations), the Laplace equation arises in describing several physical phenomena such as electrostatic potential in regions with no electric charge, gravitational potential in the regions with no mass distribution, in elasticity, etc.

1.5.1 The Poisson Equation

The Poisson equation is a BVP of the form

(1.5.3) Below are some common phenomena modeled by the Poissons equation - фото 243

Below are some common phenomena modeled by the Poisson's equation.

Electrostatics: To describe the components of the Maxwell's equations, associating the electric‐ and potential fields and to the charge density , roughly speaking, we haveand with a Dirichlet boundary condition on .

Fluid mechanics: The velocity field of a rotation‐free fluid flow satisfies and hence, is a, so‐called, gradient field: , with being a scalar potential field. The rotation‐free incompressible fluid flow satisfies , which yields the Laplace's equation for its potential. At a solid boundary, this problem will be associated with homogeneous Neumann boundary condition, due to the fact that in such a boundary, the normal velocity is zero.

Statistical physics: The random motion of particles inside a container until they hit the boundary is described by the probability of a particle starting at the point winding up to stop at some point on , where means that it is certain and means that it never happens. It turns out that solves the Laplace's equation , with discontinuity at the boundary: on and on where . Poisson's equation is of vital importance in describing, the coupling of nonlinearity aspects, in the system of gas kinetic/dynamic equations.

1.5.2 The Heat Equation

1.5.2.1 A Model Problem for the Stationary Heat Equation in картинка 244

Below we model the heat conduction in a thin heat‐conducting wire stretched between the two endpoints of an interval картинка 245that is subject to a heat source of intensity картинка 246, as in Figure 1.3. We are interested in the stationary distribution of temperature in the wire Figure 13A heatconducting onedimensional wire To this end let - фото 247in the wire.

Figure 13A heatconducting onedimensional wire To this end let denote the - фото 248

Figure 1.3A heat‐conducting one‐dimensional wire.

To this end, let картинка 249denote the heat flux in the direction of the positive картинка 250‐axis in the wire картинка 251. Conservation of energy in the stationary case requires that the net heat through the endpoints of an arbitrary subinterval картинка 252of is equal to the heat produced in per unit time By the Fundamental - фото 253is equal to the heat produced in per unit time By the Fundamental Theorem of Calculus - фото 254per unit time:

By the Fundamental Theorem of Calculus Hence we conclude that - фото 255

By the Fundamental Theorem of Calculus ,

Hence we conclude that Since and - фото 256

Hence, we conclude that

Since and are arbitrary assuming that the integrands are continuous yiel - фото 257

Since картинка 258and are arbitrary assuming that the integrands are continuous yields 154 - фото 259are arbitrary, assuming that the integrands are continuous, yields

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «An Introduction to the Finite Element Method for Differential Equations»

Представляем Вашему вниманию похожие книги на «An Introduction to the Finite Element Method for Differential Equations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «An Introduction to the Finite Element Method for Differential Equations»

Обсуждение, отзывы о книге «An Introduction to the Finite Element Method for Differential Equations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x