Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations
Здесь есть возможность читать онлайн «Mohammad Asadzadeh - An Introduction to the Finite Element Method for Differential Equations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:An Introduction to the Finite Element Method for Differential Equations
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
An Introduction to the Finite Element Method for Differential Equations: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «An Introduction to the Finite Element Method for Differential Equations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
An Introduction to the Finite Element Method (FEM) for Differential Equations
An Introduction to the Finite Element Method
is:
denote the heat flux vector and
denote the outward unit normal to the boundary
, at the point
. Then
represents the flow of heat per unit cross‐sectional area per unit time crossing a surface element. Thus,
across the boundary
. Here,
represents the element of surface area. The minus sign reflects the fact that if more heat flows out of the domain
than in, the energy in
decreases. Finally, in general, the heat production is determined by external sources that are independent of the temperature. In some cases, (such as an air conditioner controlled by a thermostat), it depends on temperature itself, but not on its derivatives. Hence, in the presence of a source (or sink), we denote the corresponding rate at which heat is produced per unit volume by
so that the source term becomes

, we get
denotes the divergence operator. In the sequel, we shall use the following simple result:
be a continuous function satisfying
for every domain
. Then
.
where
. Assume without loss of generality that
. Since
is continuous, there exists a domain (maybe very small)
, containing
, and an
, such that
, for all
. Therefore, we have
, which contradicts the assumption.
and
are unknown and additional information of an empirical nature is needed to determine the equation for the temperature
. First, for many materials, over a fairly wide but not too large temperature range, the function
depends nearly linearly on
, so that