En la última década del siglo XIX, Camilo Golgi describió unas células nerviosas en forma de estrella en 1871, que fueron denominadas “astrocitos” por el médico anatomista e histólogo húngaro Michael von Lenhossek (1773-1840) ( 1).
A su vez, Wilhelm His sostuvo, en 1899, que las prolongaciones de la glía radial servían como guía para la migración de neuroblastos durante el período embrionario ( 15).
Hacia 1913, Ramón y Cajal anotaba que además de neuronas y neuroglia existía un “tercer elemento”, células sin prolongaciones ( 15). El tercer elemento de Ramón y Cajal eran los oligodendrocitos descubiertos por Pío del Río Hortega (1882-1945), médico español, graduado de la Universidad de Valladolid y discípulo de Ramón y Cajal, quien en 1912 trabajó con otro discípulo de Ramón y Cajal, Nicolás Achúcarro (1880-1918) en el Laboratorio de Histología Normal y Patológica. Allí pudo estudiar en profundidad la neuroglia, aprendiendo técnicas de impregnación de metales preciosos. Realizó pasantías en París, Berlín y Londres, lo que lo llevó a desarrollar el famoso método de carbonato de plata, que finalmente le permitió visualizar muy bien el “tercer elemento” de Ramón y Cajal. En 1921 reveló dos nuevos tipos de células que llamó microglía y oligodendroglía. Los oligodendrocitos recibieron dicho apelativo porque tenían menos ramas y más pequeñas que los astrocitos ( 1, 4). Los oligodendrocitos se conocieron durante un tiempo considerable como células de Hortega ( 15).
El gran neurocirujano canadiense de origen estadounidense Wilder Penfield llevó a cabo en 1928 una pasantía en Madrid durante la cual trabajó con Pío del Río Hortega. Unos de los productos de dicha experiencia fueron un artículo publicado en 1924 en la revista Brain en el cual se refiere en detalle a los oligodencrocitos y la edición, en 1932, del libro Cytology & cellular pathology of the nervous system (Citología y patología celular del sistema nervioso), con la participación de varios autores, en el que Del Río Hortega presentó la microglía (finalmente aceptada por Ramón y Cajal), mientras que Penfield hizo precisiones sobre los oligodendrocitos (nunca aceptados por Ramón y Cajal). Además, Penfield, comparó los oligodendrocitos con la neuroglia clásica, en ese entonces restringida a los astrocitos, relación que facilitó su aceptación como un nuevo tipo de célula ( 4).
Las células gliales se encuentran en el sistema nervioso en un número cercano al de las neuronas, 85 000 millones comparado a 86 000 millones de neuronas. Durante muchos años se les atribuyó funciones de soporte, protección, nutrición y ayuda a la conducción nerviosa, pero en los últimos 40 años se han descrito muchas más e importantes, por ejemplo:
• Se demostró su papel de la interacción neurona-glía, en la formación de axonomielina, que se tratará en los siguientes párrafos, en el soporte a los neuroblastos durante la migración neuronal, en la inmunidad, y su función en la formación de la barrera hematoencefálica mediante astrocitos perinodales.
• Intervienen además en la formación del andamiaje necesario para la arquitectura neuronal, participan en la conducción nerviosa y regulan la liberación de neurotransmisores.
• La microglía tiene la función de retirar y digerir células muertas y restos celulares.
• Elimina acúmulos de beta-amiloide y otras proteínas vinculadas con la demencia tipo Alzheimer e interviene en la poda sináptica que ocurre durante el desarrollo cerebral ( 13, 15).
Breve historia de la mielina
Como fue mencionado en el capítulo 1, en el cerebro se habían identificado dos sustancias: la gris y la blanca. Hoy sabemos que la gris está compuesta por cuerpos celulares y la blanca, por sus prolongaciones (axones y dendritas). En la blanca existe una capa grasa que envuelve los axones, llamada mielina, denominación propuesta por Rudolf Virchow en 1853.
Se atribuye a Andrés Vesalio (1514-1564), padre de la anatomía moderna, la descripción de la sustancia blanca y la sustancia gris en el cerebro en su monumental obra, La fábrica humana, que, como se comentó en el capítulo sobre la historia del cerebro, fue publicada en 1543.
El primero en describir fibras mielinizadas fue Anton van Leeuwenhoek (1632-1723), considerado el padre de la microbiología. Observó al microscopio nervios, a los que denominó “tubos”, y señaló en 1717 que estaban envueltos por una fina capa de vasos extraordinariamente delgados ( 4).
El físico y naturalista Felice Gaspar Fontana (1730-1805) pudo determinar la estructura básica del nervio señalando que estaba compuesto por canales o hilos simples, con cilindros muy pequeños, que denominó “cilindros nerviosos primitivos”. Utilizando lentes que permitían aumentar hasta 800 veces lo que estaba observando, apuntó que los cilindros tenían una envoltura externa menos transparente y compuesta por hilos extremadamente finos ( 4).
Robert Remak (1815-1865) comenzó a observar en el sistema nervioso periférico “bandas primitivas” que correspondían a axones y señaló que algunas tenían una capa de células nucleadas alrededor, lo que corresponde a fibras mielinizadas y otras no, denominadas hoy en día fibras amielínicas. Se le atribuye, así mismo, haber sido el primero en advertir que los nervios no eran tubos huecos ( 1, 2).
Como se anotó en el capítulo 1, las primeras observaciones del cerebro mencionaban que tenía una cubierta a la que se denominó corteza y, de una manera genérica, su interior fue denominado médula. No obstante, Theodor Schwann no estaba de acuerdo con la denominación “médula” para el tejido que se observaba por debajo de la corteza cerebral y propuso llamarla “sustancia blanca”. Observándola al microscopio, se refirió a una membrana que rodea los axones como “cono medular”, en la que distinguió células nucleadas ( 4). Louis Ranvier, en 1871, nombró dichas unidades “células de Schwann” y el término fue utilizado posteriormente por Ramón y Cajal en su monumental obra ( 13). Es importante anotar que la palabra mielina fue acuñada por el patólogo alemán Rudolf Ludwig Virchow en 1853, siendo muy bien recibida y llevando a que la denominación “cono medular” entrara en desuso ( 1, 4).
En 1868 el padre de la neurología moderna, Jean-Martin Charcot (1825-1893), estableció criterios clínicos e histológicos para el diagnóstico de la esclerosis múltiple, que denominó esclerosis en placas. Se refirió a la mielina (myéline) y, desde el punto de vista histológico, a la desmielinización al observar acumulación de gotas medulares o gránulos grasos que destruyen progresivamente la mielina ( 4).
A mediados del siglo XIX se sabía que los nervios transmitían electricidad, como se señaló en el capítulo precedente. Rudolf Virchow formuló que la función de la mielina sería servir como “una masa aislante” que limita la electricidad dentro del nervio en sí ( 4).
En 1925, Francis Otto Schmitt (1903-1995), utilizando luz polarizada pudo determinar que la mielina tenía dos capas de lípidos, lo cual se denominó “membrana de bicapa lipídica” ( 4).
Composición de la mielina
En relación con su composición, Von Kölliker apuntaba que tenía componentes proteicos muy similares a la fibrina muscular y grasas de diversos tipos, y, a finales del xix, Johann Ludwig Thudichum (1829-1901) caracterizó parcialmente muchos lípidos de la mielina, incluido su galactocerebrósido ( 4).
A comienzos del siglo XX, Ramón y Cajal señalaba en su obra Histología del sistema nervioso del hombre y los vertebrados que la mielina era considerada una sustancia semilíquida albúmina-grasa, con una composición química compleja que incluía colesterina, protagon, lecitina, cerebrina y neuroqueratina ( 4).
Читать дальше