Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Example 2.3

1 What is the probability P of finding a PiB in the center third of the box for n = 1?

2 What is P for the same range for a classical particle?

Answer:

1 The probability P of finding a quantum mechanical particle–wave is given by the square of the amplitude of the wavefunction. Thus,(E2.3.1)The integral over the sin2 function can be evaluated using(E2.3.2)Then the probability is(E.2.3.3)

2 A classical particle would be found with equal probability anywhere in the box; thus, the probability of finding it in the center third would just 1/3. Note that for higher values of n, the probability of finding it in the center third will decrease.

2.4 The Particle in a Two‐Dimensional Box, the Unbound Particle, and the Particle in a Box with Finite Energy Barriers

2.4.1 Particle in a 2D Box

The principles derived in the previous section can easily by expanded to a two‐dimensional (2D) case. Here, an electron would be confined in a box with dimensions L xin the x ‐direction and L yin the y ‐direction, with zero potential energy inside the box and infinitely high potential energy outside the box:

(2.42) The Hamiltonian for this system is 243 and the total wavefunction ψ x - фото 140

The Hamiltonian for this system is

(2.43) and the total wavefunction ψ x ycan be written as 244 where A as before - фото 141

and the total wavefunction ψ x, ycan be written as

(2.44) where A as before is an amplitude normalization constant The total energy of - фото 142

where A as before is an amplitude (normalization) constant. The total energy of the system is

(2.45) Figure 24 Wavefunctions of the twodimensional particle in a box for a n x - фото 143

Figure 24 Wavefunctions of the twodimensional particle in a box for a n x - фото 144

Figure 2.4 Wavefunctions of the two‐dimensional particle in a box for (a) n x= 1 and n y= 2 and (b) n x= 2 and n y= 1.

For a square box with L x= L y= L , the energy expression simplifies to

(2.46) The wavefunctions can now be represented as shown in Figure 24for the cases n - фото 145

The wavefunctions can now be represented as shown in Figure 2.4for the cases n x= 2 and n y= 1 and n x= 1 and n y= 2. These wavefunctions represent the standing wave on a square drum. Notice that the energy eigenvalues for these two cases are the same:

(2.47) When two or more energy eigenvalues for different combination of quantum - фото 146

When two or more energy eigenvalues for different combination of quantum numbers are the same, these energy states are said to be degenerate . Here, for n x= 2 and n y= 1 and n x= 1 and n y= 2, the same energy eigenvalues are obtained; consequently, E 21and E 12are degenerate. This is a common occurrence in quantum mechanics, as will be seen later in the discussion of the hydrogen atom ( Chapter 7), where all the three 2p orbitals, the five 3d orbitals, and the seven 4f orbitals are found to be degenerate.

2.4.2 The Unbound Particle

Next, the case of a system without the restriction of the boundary conditions (an unbound particle) will be discussed. This discussion starts with the same Hamiltonian used before:

(2.23) When this differential equation is solved without the previously used boundary - фото 147

When this differential equation is solved without the previously used boundary conditions

(2.29) the new solutions represent a particlewave that travels along the positive or - фото 148

the new solutions represent a particle–wave that travels along the positive or negative x ‐direction. The most general solution of the differential Eq. (2.23)is

(2.48) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 149

where b is a constant.

The second derivative of Eq. (2.48)is given by

(2.49) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 150

with

(2.50) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 151

or

(2.51) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 152

Equation (2.51)was obtained by substituting

(2.52) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 153

into Eq. (2.50). Thus, the unbound particle can be described by a traveling wave (as opposed to a standing wave)

(2.53) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 154

carrying a momentum

(2.54) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 155

into the positive or negative x ‐direction. kis the wave vector defined in Eq. (1.6).

2.4.3 The Particle in a Box with Finite Energy Barriers

Finally, the particle in a box with a finite energy barrier, V 0, will be discussed qualitatively. This is a situation where the particle is no longer strictly forbidden outside the confinement box and leads to the concept of tunneling, that is, the probability of the electron found outside the box. The shape of the potential function is shown in Figure 2.5b.

The potential energy for this case is written as

(2.55) and 256 Notice that the boundaries of the box were shifted from 0 to L to - фото 156

and

(2.56) Notice that the boundaries of the box were shifted from 0 to L to L 2 to - фото 157

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x