Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

or abbreviated as Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 84. If Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 85the operators commutate and can be determined simultaneously; if the commutator is not zero, then the eigenvalues cannot be determined simultaneously. This case will be demonstrated in Example 2.2.

Example 2.2Determine the commutator картинка 86of the momentum operator картинка 87and the position operator when applied to a function f x ie determine E221 E222 - фото 88when applied to a function f ( x ), i.e. determine

(E2.2.1) E222 Answer The derivative of the product need - фото 89

(E2.2.2) Answer The derivative of the product needs to be evaluated using the product - фото 90

Answer:

The derivative of the product needs to be evaluated using the product rule of differentiation Thus E223 - фото 91needs to be evaluated using the product rule of differentiation. Thus,

(E2.2.3) E224 Thus the commutator E225 - фото 92

(E2.2.4) Thus the commutator E225 which predicts that the position and momentum - фото 93

Thus, the commutator

(E2.2.5) which predicts that the position and momentum of a moving particle cannot be - фото 94

which predicts that the position and momentum of a moving particle cannot be determined simultaneously. This was stated earlier in Eq. (2.1)as the Heisenberg uncertainty principle as

(2.1) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 95

To show the equivalency of Eqs. (E2.2.5)and (2.1), one has to determine the standard deviations in momentum and position σ pand σ xthat can be related to the uncertainties Δ p xand Δ x .

Figure 21 Potential energy functions and analytical expressions for a - фото 96

Figure 2.1 Potential energy functions and analytical expressions for (a) molecular vibrations and (b) an electron in the field of a nucleus. Here, f is a force constant, k is the Coulombic constant, and e is the electron charge.

2.2 The Potential Energy and Potential Functions

In Postulate 2, the kinetic energy T was substituted by the operator

(2.4) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 97

but the potential energy V was left unchanged, since it does not include the momentum of a moving particle. The potential energy, however, depends on the particular interactions describing the problem, for example, the potential energy an electron experiences in the field of a nucleus or the potential energy exerted by a chemical bond between two vibrating nuclei. The shape of these potential energy curves are shown in Figure 2.1along with the potential energy equations.

When these potential energy expressions are substituted into the Schrödinger equation

(2.7) one obtains a differential equation 215 for the harmonic oscillation of a - фото 98

one obtains a differential equation:

(2.15) for the harmonic oscillation of a diatomic molecule and 216 for the - фото 99

for the harmonic oscillation of a diatomic molecule and

(2.16) for the electron in a hydrogen atom In Eqs 215and 216 f and k are - фото 100

for the electron in a hydrogen atom. In Eqs. (2.15)and (2.16), f and k are constants that will be introduced later, and e is the electronic charge, e = 1.602 × 10 −19[C]. Equation (2.16)is not strictly correct since the potential energy is a spherical function in the distance r from the nucleus, but is presented here and in Figure 2.1as a one‐dimensional quantity. Also, the mass in the denominator of the kinetic energy operator needs to be substituted by the reduced mass to be introduced later.

Due to the difficulties in solving equations such as Eqs. (2.15)and (2.16), a much simpler potential energy function will be used for the initial example of a quantum mechanical system, namely, a rectangular box function. The ensuing particle in a box is an artificial example but is pedagogically extremely useful and presents simple differential equations while offering real physical applications; see Section 2.5.

2.3 Demonstration of Quantum Mechanical Principles for a Simple, One‐Dimensional, One‐Electron Model System: The Particle in a Box

Real quantum mechanical systems have the tendency to become mathematically quite complicated due to the complexity of the differential equations introduced in the previous section. Thus, a simple model system will be presented here to illustrate the principles of quantum mechanics introduced in Sections 2.1and 2.2. The model system to be presented is the so‐called particle in a box (henceforth referred to as “PiB”) in which the potential energy expression is simplified but still has with wide‐ranging analogies to real systems. This model is very instructive, since it shows in detail how the quantum mechanical formalism works in a situation that is sufficiently simple to carry out the calculations step by step while providing results that much resemble the results in a more realistic model. This is exemplified by the overall similarity such as the symmetry (parity) of the PiB wavefunctions when compared with that of the harmonic oscillator wavefunctions discussed in Chapter 4.

2.3.1 Definition of the Model System

The PiB model assumes that a particle, such as an electron, is placed into a potential energy well or confinement shown in Figure 2.2. This confinement (the “box”) has zero potential energy for 0 ≤ xL , where L is the length of the box. Outside the box, i.e. for x < 0 and for x > L , the potential energy is assumed to be infinite. Thus, once the electron is placed inside the box, it has no chance to escape, and one knows for certain that the electron is in the box.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x