Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As discussed earlier, the total energy is written as the sum of the kinetic and potential energies, T and V , respectively:

(2.17) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 101

As before, the kinetic energy of the particle is given by

(2.3) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 102

where m is the mass of the electron. Substituting the quantum mechanical momentum operator,

(2.4) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 103

into Eq. (2.3), the kinetic energy operator can be written as

(2.5) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 104

Figure 22 Panel a Wavefunctions for n 1 2 3 4 and 5 drawn at their - фото 105

Figure 2.2 Panel (a): Wavefunctions for n 1 2 3 4 and 5 drawn at their appropriate energy levels Energy - фото 106for n = 1, 2, 3, 4, and 5 drawn at their appropriate energy levels. Energy given in units of h 2 / 8 mL 2. Panel (b): Plot of the square of the wavefunctions shown in (a).

The potential energy inside the box is zero; thus, the total energy of the particle inside the box is

(2.18) Since the potential energy outside the box is infinitely high the electron - фото 107

Since the potential energy outside the box is infinitely high, the electron cannot be there, and the discussion henceforth will deal with the inside of the box. Thus, one may write the total Hamiltonian of the system as

(2.19) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 108

In the notation of linear algebra, this operator/eigenvector/eigenvalue problem is written as

(2.20) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 109

Equation (2.20)instructs to apply the Hamiltonian of Eq. (2.19)to a set of yet unknown eigenfunctions to obtain the desired energy eigenvalues. The eigenfunctions typically form an n‐dimensional vector space in which the eigenvalues appear along the diagonal. Thus, Eq. (2.20)implies

(2.21) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 110

that is, the Hamiltonian operating on a set of eigenfunctions such that

Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 111; Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 112; Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 113; and so forth that is, of course, obtained by carrying out the matrix multiplication indicated in Eq. (2.21).

2.3.2 Solution of the Particle‐in‐a‐Box Schrödinger Equation

Rearranging Eqs. (2.19)and (2.20)yields

(2.22) which is a simple differential equation that can be used to obtain the - фото 114

which is a simple differential equation that can be used to obtain the eigenfunctions ψ( x ):

(2.23) Any functions fulfilling Eq 223must be of the form that their second - фото 115

Any functions fulfilling Eq. (2.23)must be of the form that their second derivative equals to the original function multiplied by a constant. For example, the function

(2.24) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 116

could be solution of the differential Eq. (2.23),

since

(2.25) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 117

Here, the term b 2would correspond to 2 mE / ħ 2, and A is a yet undefined amplitude factor. Similarly,

(2.26) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 118

or the sum of Eqs. (2.24)and (2.26)could be acceptable solutions. For the time being, and for reasons that will become obvious shortly, Eq. (2.26)will be used as a trial function to fulfill Eq. (2.23):

(2.27) and 228 At this point it should be pointed out that the solutions of any - фото 119

and

(2.28) At this point it should be pointed out that the solutions of any differential - фото 120

At this point, it should be pointed out that the solutions of any differential equation depend to a large extent on the boundary conditions: the general solution of the differential equation may or may not describe the physical reality of the system, and it is the boundary conditions that force the solutions to be physically meaningful. In the case of the PiB, the boundary conditions are determined by one of the postulates of quantum mechanics that requires that wavefunctions are continuous. Thus, if the wavefunction outside the box is zero (since the potential energy outside to box is infinitely high and, therefore, the probability of finding the particle outside the box is zero), the wavefunction inside the box also must be zero at the boundaries of the box. Thus, one may write the boundary conditions for the PiB differential equation as

(2.29) Because of these conditions the cosine function proposed as possible solutions - фото 121

Because of these conditions, the cosine function proposed as possible solutions ( Eq. [2.24]) of Eq. (2.23)was rejected, since the cosine function is nonzero at x = 0. Because of the required continuity at x = L , the value of the function

must be zero at x L as well This can happen in two ways The first - фото 122

must be zero at x = L as well. This can happen in two ways: The first possibility occurs if the amplitude A is zero. This case is of no further interest, since a zero amplitude of the wavefunction would imply that the particle is not inside the box. The second possibility for the wavefunction to be zero at x = L occurs if

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x