Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

If the wavefunctions Ψ( x, t ) are normalized, Eq. (2.7)simplifies to

(2.9) since the denominator in Eq 28equals 1 This expectation value may be - фото 65

since the denominator in Eq. (2.8)equals 1. This expectation value may be viewed as an expected average of many independent measurements and embodies the probabilistic nature of quantum mechanics.

Postulate 5: The eigenfunctions ϕ i , which are the solutions of the equation Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 66, form a complete orthogonal set of functions or, in other words, define a vector space. This, again, will be demonstrated in Section 2.3for the particle‐in‐a‐box wavefunctions, which are all orthogonal to each other and therefore may be considered unit vectors in a vector space.

When evaluating the expectation values Eq 29 the functions ψ x may or may not be eigenfunctions of because - фото 67( Eq. [2.9]), the functions ψ( x ) may or may not be eigenfunctions of картинка 68because the real eigenfunctions ϕ ( x ) form a complete vector space. Functions that are not eigenfunctions of картинка 69can be written as linear combinations of the basis functions ϕ ( x ). Thus, any arbitrary wavefunction ψ of a system can be written in terms of a series expansion of the true eigenfunctions ϕ ( x ) as follows:

(2.10) The expansion coefficients a nindicate how much each wavefunction contributes - фото 70

The expansion coefficients a nindicate how much each wavefunction contributes to, or resembles, the true eigenfunction of the operator. This aspect is particularly important for the approximate methods for solving the Schrödinger equation discussed in Appendix 2.

Postulate 6: Time‐dependent systems are described by the time‐dependent Schrödinger equation

(2.11) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 71

where the time‐dependent wavefunctions are the product of a time‐independent part, ψ(x), and a time evolution part:

(2.12) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 72

We shall encounter the time‐dependent Schrödinger equation mainly in processes where molecular systems are subject to a perturbation by electromagnetic radiation (i.e. in spectroscopy) and shall develop the formalism that predicts whether or not the incident radiation will cause a transition in the molecule between two states with energy difference Δ E = h ν = ħ ω .

Next, a simple operator/eigenvalue example will be presented to illustrate some of the mathematical aspects.

Example 2.1Operator/eigenvalue problem

Show that the function Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 73is an eigenfunction of the operator Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 74, that is, show that Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 75

Answer:

(E2.1.1) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 76

The function Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 77is an eigenfunction of the operator. The eigenvalue c = −1.

Postulate 7: In many‐electron atoms, no two electrons can have identically the same set of quantum numbers. This postulate is known as the Pauli exclusion principle. It is also formulated as follows: the product wavefunction for all electrons in an atom must be antisymmetric with respect to interchange of two electrons. This postulate leads to the formulation of the product wavefunction in the form of Slater determinants (see Section 9.2) in many‐electron systems. The value of a determinant is zero when two rows or two columns are equal; thus, an atomic system where any electrons have exactly the same four quantum numbers would have an undefined product wavefunction. Furthermore, exchange of two rows (or columns) leads to a sign change of the value of the determinant. This last statement implies the antisymmetric property of the product wavefunction that changes its sign upon exchange of two electrons.

Commutation of operators: Although not really a postulate of quantum mechanics (since it follows from well‐defined mathematical principles), a discussion of the effects of operator commutation is included here. In physics, one often wishes to determine several quantities simultaneously, such as the position and momentum of a moving object or the x , y , and z components of the angular momentum. Since Postulate 3 above states that every observable is associated with a quantum mechanical operator, one has to investigate the case of solving for the eigenvalues of two operators simultaneously.

Let and be two operators such that 213 where a and - фото 78and be two operators such that 213 where a and b are the eigenvalues and φ and - фото 79be two operators such that

(2.13) where a and b are the eigenvalues and φ and ϕ the eigenfunctions of and - фото 80

where a and b are the eigenvalues and φ and ϕ the eigenfunctions of картинка 81and картинка 82, respectively. These eigenvalues can be determined simultaneously in the same vector space if and only if the operators commutate, that is, if the order of application of the operators on the eigenfunction is immaterial. This commutator of two operators is written as

(2.14) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 83

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x