Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.30) Since the sine function is zero at multiples of π radians it follows that - фото 123

Since the sine function is zero at multiples of π radians, it follows that

(2.31) Solving Eq 231for E yields the energy eigenvalues 232 Equation - фото 124

Solving Eq. (2.31)for E yields the energy eigenvalues

(2.32) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 125

Equation (2.32)reveals that the energy levels of the particle in a box are quantized, that is, the energy can no longer assume any arbitrary values, but only values of Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 126and so on. This is the first appearance of the concept of quantized energy levels in a model system and represents a step of enormous importance for the understanding of quantum mechanics and spectroscopy: by substituting the classical momentum with the momentum operator, quantized energy levels (or stationary states) were obtained. This quantization is a direct consequence of the boundary conditions, which required wavefunctions to be zero at the edge of the box. Since the energy depends on this quantum number n , one usually writes Eq. (2.32)as

(2.33) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 127

Substituting these energy eigenvalues back into Eq. (2.27)

(2.27) one obtains 234 which are the wave functions for the PiB 233 - фото 128

one obtains

(2.34) which are the wave functions for the PiB 233 Normalization and - фото 129

which are the wave functions for the PiB.

2.3.3 Normalization and Orthogonality of the PiB Wavefunctions

In Eq. (2.34), “A” is an amplitude factor still undefined at this point. To determine “A,” one argues as follows: since the square of the wavefunction is defined as the probability of finding the particle, the square of the wavefunction written in Eq. (2.34), integrated over the length of the box, must be unity, since the particle is known to be in the box. This leads to the normalization condition

(2.35) Using the integral relationship 236 the amplitude A is obtained as follows - фото 130

Using the integral relationship

(2.36) the amplitude A is obtained as follows 23 - фото 131

the amplitude A is obtained as follows:

Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 132 Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 133

(2.37) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 134

Thus, the normalized stationary‐state wavefunctions for the particle in a box can be written in a final form as

(2.38) The stationarystate timeindependent wavefunctions and energies are depicted - фото 135

The stationary‐state (time‐independent) wavefunctions and energies are depicted in Figure 2.2, panel (a). Although one refers to these wavefunctions as time‐independent, they may be considered as standing waves in which the amplitudes oscillate between the extremes as shown in Figure 2.3and resemble the motion of a plugged string. Time independency then refers to the fact that the system will stay in one of these standing wave patterns forever or until perturbed by electromagnetic radiation.

The probability of finding the particle at any given position x is shown in Figure 2.2, panel (b). These traces are the squares of the wavefunctions and depict that for higher levels of n, the probability of finding the particle moves away from the center to the periphery of the box.

The PiB wavefunctions form an orthonormal vector space, which implies that

(2.39) δ mnin Eq 239is referred to as the Kronecker symbol that has the value of 1 - фото 136

δ mnin Eq. (2.39)is referred to as the Kronecker symbol that has the value of 1 if n = m and is zero otherwise. The wavefunctions' normality was established above by normalizing them ( Eqs. (2.36)and (2.37)); in order to demonstrate that they are orthogonal, the integral

(2.40) Figure 23 a Representation of the particleinabox wavefunctions shown in - фото 137

Figure 23 a Representation of the particleinabox wavefunctions shown in - фото 138

Figure 2.3 (a) Representation of the particle‐in‐a‐box wavefunctions shown in Figure 2.2as standing waves. (b) Visualization of the orthogonality of the first two PiB wavefunctions. See text for detail.

needs to be evaluated. This can be accomplished using the integral relationship

(2.41) For any two adjacent wavefunction say m 1 and n 2 or m 2 and n 3 the - фото 139

For any two adjacent wavefunction, say, m = 1 and n = 2 or m = 2 and n = 3, the numerator of the first term in Eq. (2.41)contains the sine function of odd multiples of π, whereas the numerator of the second term will contain the sine function of even multiples of π. Since the sine function of odd and even multiples of π is zero, the total integral described by Eq. (2.41)is zero. This argument holds for any case where n ≠ m .

This can also be visualized graphically, as shown in Figure 2.3bfor the first two PiB wavefunctions for n = 1 (curve a) and m = 2 (curve b). When multiplied, curve c is obtained. The shaded areas above and below the abscissa of curve c represent the integral in Eq. (2.40)for n = 1 and m = 2 and are equal; therefore, the area under the product curve c is zero.

Figure 2.3aalso shows that the wavefunctions for the states with quantum number larger than 1 have nodal points, or points with no amplitude. This is familiar from classical wave behavior, for example, for a vibrating string. Since the meaning of the squared amplitude of the wavefunction can be visualized for the particle in a box as the probability of finding the electron, these nodal points represent regions in which the electron is not found.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x