Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The incorporation of this uncertainty into the picture of the motion of microscopic particles leads to discrepancies between classical and quantum mechanics: classical physics has a deterministic outcome, which implies that if the position and velocity (trajectory) of a moving body are established, it is possible to predict with certainty where it is going to be found in the future. This principle certainly holds at the macroscopic scale: if the position and trajectory of a macroscopic body, for example, the moon, are known, it is certainly possible to calculate its position six days from now and to send a spaceship to this predicted position.

Quantum mechanical systems, on the other hand, obey a probabilistic behavior. Since the position and momentum can never be determined simultaneously at any point in time, the position (or momentum) in the future cannot be precisely predicted, only the probability of either of them. This is manifested in the postulate that all properties, present or future, of a particle are contained in a quantity known as the wavefunction Ψ of a system. This function, in general, depends on spatial coordinates and time; thus, for a one‐dimensional motion (to be discussed first), the wavefunction is written as Ψ( x , t ). The probability of finding a quantum mechanical system at any time is given by the integral of the square of this wavefunction: ∫Ψ( x , t ) 2d x . This is, in fact, one of the “postulates” on which quantum mechanics is based to be discussed next. Different authors list these postulates in different orders and include different postulates necessary for the description of quantum mechanical systems [1]. Quantum mechanics is unusual in that it is based on postulates, whereas science, in general, is axiom‐based.

2.1 Postulates of Quantum Mechanics

Postulate 1: The state of a quantum mechanical system is completely defined by a wavefunction Ψ( x, t ). The square of this function, or in the case of complex wavefunction, the product Ψ*( x, t ) Ψ( x, t ), integrated over a volume element d τ (= d x d y d z in Cartesian coordinates or sin 2 θ d θ d φ in spherical polar coordinates) gives the probability of finding a system in the volume element d τ . Here, Ψ*( x, t ) is the complex conjugate of the function Ψ( x, t ). This postulate contains the transition from a deterministic to probabilistic description of a quantum mechanical system. The wavefunctions must be mathematically well behaved, that is, they must be single‐valued, continuous, having a continuous first derivative, and integratable (so they can be normalized).

Postulate 2: The classical linear momentum expression, p = m v, is substituted in quantum mechanics by the differential operator defined by 22 operating or being applied to the wavefunction Ψ x t - фото 52, defined by

(2.2) operating or being applied to the wavefunction Ψ x t In Eq 22 i is - фото 53

operating (or being applied to) the wavefunction Ψ( x, t ). In Eq. (2.2), i is the imaginary unit, defined by картинка 54 Equation (2.2)often is considered the central postulate of QM.

The form of Eq. (2.2)can be made plausible from equations of classical wave mechanics, de Broglie's equation ( Eq. [1.10]) and Planck's equation ( Eq. [1.7]), but cannot be derived axiomatically. It was the genius of E. Schrödinger to realize that the substitution described in Eq. (2.2)yields differential equations that had long been known and had solutions that agreed with experiments. In the Schrödinger equations to be discussed explicitly in the next chapters (for the H atom, the vibrations and rotations of molecules, and molecular electronic energies), the classical kinetic energy T given by

(2.3) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 55

is, therefore, substituted by

(2.4) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 56

which is, of course, obtained by inserting Eq. (2.2)into Eq. (2.3). The total energy of a system is given as the sum of the potential energy V and the kinetic energy T :

(2.5) Postulate 3 All experimental results are referred to as observables that must - фото 57

Postulate 3: All experimental results are referred to as observables that must be real (not imaginary or complex). An observable is associated with (or is the “eigenvalue” of) a quantum mechanical operator Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 58. This can be written as

(2.6) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 59

where a are the eigenvalues and ϕ the corresponding eigenfunctions. The terms “operator,” “eigenvalues,” and “eigenfunctions” are terminology from linear algebra and will be further explained in Section 2.3where the first real eigenvalue problem, the particle in a box, will be discussed. Notice that the eigenfunctions often are polynomials, and each of these eigenfunctions has its corresponding eigenvalue.

In this book, following generally accepted notations, the total energy operator is generally identified by the symbol картинка 60and referred to as the Hamilton operator, or the Hamiltonian, of the system. With the definition of the Hamiltonian above, it is customary to write the total energy equation of the system as

(2.7) Equation 27implies that the energy eigenvalues E are obtained by applying - фото 61

Equation (2.7)implies that the energy “eigenvalues” E are obtained by applying the operator картинка 62on a set of (still unknown) eigenfunctions ψ that are here assumed to be time‐independent and a function of spatial coordinates x only, ψ( x ). Solving the differential equations given by Eq. (2.7)yields the eigenfunctions ψ iand their associated energy eigenvalues E i.

Postulate 4: The expectation value of an observable a , associated with an operator for repeated measurements is given by 28 If the wavefunctions Ψ x t - фото 63, for repeated measurements, is given by

(2.8) If the wavefunctions Ψ x t are normalized Eq 27simplifies to 29 - фото 64

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x