1 Cover
2 Titelblatt
3 Urheberrechte Autor Dr. Max Diem Professor emeritus Department of Chemistry Northeastern University Laboratory of Spectral Diagnosis Boston, Massachusetts USA Cover © iStock 1207644140 / in-future (art & technology) und 154926630 / virtualphoto (Blackboard) Zusatzmaterial für Dozentinnen und Dozenten erhältlich unter www.wiley-vch.de/textbooks Alle Bücher von WILEY-VCH werden sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag in keinem Fall,einschließlich des vorliegendenWerkes, für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler irgendeine Haftung. Bibliografische Information der Deutschen Nationalbibliothek DieDeutscheNationalbibliothek verzeichnet diese Publikation in derDeutschenNationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. © 2021 WILEY-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind. Print ISBN 978-3-527-34790-2 ePDF ISBN 978-3-527-82958-3 ePub ISBN 978-3-527-82959-0 Umschlaggestaltung Schulz Grafik-Design, Fußgönheim Satz le-tex publishing services GmbH, Leipzig Druck und Bindung Gedruckt auf säurefreiem Papier. 10 9 8 7 6 5 4 3 2 1
4 Vorwort
5 Einleitung
6 1 Übergang von der klassischen Physik zur Quantenmechanik 1.1 Beschreibung von Licht als elektromagnetische Welle 1.2 Strahlung des Schwarzen Körpers 1.3 Der photoelektrische Effekt 1.4 Absorptions- und Emissionsspektren von Wasserstoffatomen 1.5 Molekülspektroskopie 1.6 Zusammenfassung Aufgaben Literatur
7 2 Grundlagen der Quantenmechanik 2.1 Postulate der Quantenmechanik 2.2 Die potenzielle Energie und Potenzialfunktionen 2.3 Demonstration der quantenmechanischen Prinzipien für ein einfaches, eindimensionales Ein-Elektronen-Modellsystem: Das Teilchen im Kasten 2.4 Das Teilchen in einem zweidimensionalen Kasten, das ungebundene Teilchen und das Teilchen in einem Kasten mit endlichen Energiebarrieren 2.5 Reale Teilchen im Kasten: Konjugierte Polyene, Quantenpunkte und Quantenkaskadenlaser Aufgaben Literatur
8 3 Störung stationärer Zustände durch elektromagnetische Strahlung 3.1 Zeitabhängige Störungstheorie stationärer Zustände durch elektromagnetische Strahlung 3.2 Dipolerlaubte Absorptions- und Emissionsübergänge und Auswahlregeln für das Teilchen im Kasten 3.3 Einstein-Koeffizienten für die Absorption und Emission von Licht 3.4 Laser Aufgaben Literatur
9 4 Der harmonische Oszillator, ein Modellsystem für die Schwingungen von zweiatomigen Molekülen 4.1 Klassische Beschreibung eines schwingenden zweiatomigen Modellsystems 4.2 Die Schrödinger-Gleichung, Energieeigenwerte und Wellenfunktionen für den harmonischen Oszillator 4.3 Übergangsmoment und Auswahlregeln für Absorption für den harmonischen Oszillator 4.4 Der anharmonische Oszillator 4.5 Schwingungsspektren von zweiatomigen Molekülen 4.6 Zusammenfassung Aufgaben Literatur
10 5 Infrarot und Raman-Schwingungsspektroskopie mehratomiger Moleküle 5.1 Schwingungsenergie mehratomiger Moleküle: Normalkoordinaten und normale Schwingungsmoden 5.2 Quantenmechanische Beschreibung molekularer Schwingungen in mehratomigen Molekülen 5.3 Infrarotabsorptionsspektroskopie 5.4 Raman-Spektroskopie 5.5 Auswahlregeln für IR- und Raman-Spektroskopie mehratomiger Moleküle 5.6 Beziehung zwischen Infrarot- und Raman-Spektren: Chloroform 5.7 Zusammenfassung: Molekulare Schwingungen in Wissenschaft und Technologie Aufgaben Literatur
11 6 Rotation von Molekülen und Rotationsspektroskopie 6.1 Klassische Rotationsenergie von zwei- und mehratomigen Molekülen 6.2 Quantenmechanische Beschreibung des Drehimpulsoperators 6.3 Die Schrödinger-Gleichung für Rotation, Eigenfunktionen und Energieeigenwerte 6.4 Auswahlregeln für Rotationsübergänge 6.5 Rotationsabsorptionsspektren (Mikrowellenspektren) 6.6 Rotationsschwingungsübergänge Aufgaben Literatur
12 7 Atomstruktur: Das Wasserstoffatom 7.1 Die Schrödinger-Gleichung für das Wasserstoffatom 7.2 Lösungen der Schrödinger-Gleichung für das 7.3 Dipolerlaubte Übergänge für das Wasserstoffatom 7.4 Diskussion der Ergebnisse für das Wasserstoffatom 7.5 Elektronenspin 7.6 Räumliche Quantisierung des Drehimpulses Aufgaben Literatur
13 8 Kernspinresonanzspektroskopie (Nuclear Magnetic Resonance, NMR)8.1 Allgemeine Bemerkungen 8.2 Rückblick auf Drehimpuls und Spindrehimpuls von Elektronen 8.3 Kernspin 8.4 Auswahlregeln, Übergangsenergien, Magnetisierung und Spinpopulationsanalyse 8.5 Chemische Verschiebung 8.6 Multispinsysteme 8.7 Puls-FT-NMR Spektroskopie Aufgaben Literatur
14 9 Atomstruktur: Mehr-Elektronen-Systeme9.1 Der Zwei-Elektronen-Hamilton-Operator, die Abschirmung und die effektive Kernladung 9.2 Das Pauli-Prinzip 9.3 Das Aufbauprinzip 9.4 Periodische Eigenschaften von Elementen 9.5 Atomenergieniveaus 9.6 Atomspektroskopie 9.7 Atomspektroskopie in der analytischen Chemie Aufgaben Literatur
15 10 Elektronische Energieniveaus und Spektroskopie mehratomiger Moleküle 10.1 Molekülorbitale und chemische Bindung im H 2 +-Molekülion 10.2 Molekülorbitaltheorie für homonukleare zweiatomige Moleküle 10.3 Termsymbole und Auswahlregeln für homonukleare zweiatomige Moleküle 10.4 Elektronische Spektren von zweiatomigen Molekülen 10.5 Qualitative Beschreibung elektronischer Spektren mehratomiger Moleküle 10.6 Fluoreszenzspektroskopie 10.7 Optische Aktivität: elektronischer Zirkulardichroismus (ECD) und optische Rotation Aufgaben Literatur
16 11 Gruppentheorie und Symmetrie 11.1 Symmetrieoperationen und Symmetriegruppen 11.2 Darstellung einer Gruppe 11.3 Symmetriedarstellungen molekularer Schwingungen 11.4 Symmetriebasierte Auswahlregeln für dipolzulässige Prozesse 11.5 Auswahlregeln für die Raman-Streuung 11.6 Charaktertafeln von gängigen Punktgruppen Aufgaben Literatur
17 Lösungen zu den Aufgaben
18 Anhang A: Konstanten und Umrechnungsfaktoren
19 Anhang B: Näherungsmethoden: Variations- und StörungstheorieB.1 Allgemeine Bemerkungen B.2 Variationsmethode B.3 Zeitunabhängige Störungstheorie für nicht entartete Systeme B.4 Detailliertes Beispiel für eine zeitunabhängige Störung: das Teilchen im Kasten mit geneigter Potenzialfunktion B.5 Zeitabhängige Störung molekularer Systeme durch elektromagnetische Strahlung Literatur
20 Anhang C: Nicht lineare spektroskopische Methoden C.1 Allgemeine Formulierung nicht linearer Effekte C.2 Nicht kohärente, nicht lineare Effekte: Hyper-Raman-Spektroskopie C.3 Kohärente nicht lineare Effekte C.4 Nachbemerkung Literatur
21 Anhang D: Fourier-TransformationsmethodikD.1 Einführung in die Fourier-Transformationsspektroskopie D.2 Datendarstellung in verschiedenen Domänen D.3 Fourier-Serie D.4 Fourier-Transformation D.5 Diskrete und schnelle Fourier-Transformationsalgorithmen D.6 FT-Implementierung in EXCEL oder MATLAB Literatur
22 Anhang E: Beschreibung der Spinwellenfunktionen durch Pauli-Spinmatrizen E.1 Die Formulierung der Spin-Eigenfunktionen α und β als Vektoren E.2 Form der Pauli-Spinmatrizen E.3 Eigenwerte der Spinmatrizen Literatur
Читать дальше