Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy

Здесь есть возможность читать онлайн «Max Diem - Quantum Mechanical Foundations of Molecular Spectroscopy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanical Foundations of Molecular Spectroscopy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanical Foundations of Molecular Spectroscopy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text,
covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry.
The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text:
Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students,
provides an accessible text for understanding molecular spectroscopy.

Quantum Mechanical Foundations of Molecular Spectroscopy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanical Foundations of Molecular Spectroscopy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.18) where the subscript f and i denote respectively the final and initial - фото 37

where the subscript f and i denote, respectively, the final and initial (energy) state of the atom (or molecule). Such a process is referred to as a “emission” of a photon. Similarly, an absorption process is one in which the atom undergoes a transition from a lower to a higher energy state, the energy difference being provided by a photon that is annihilated in the process. Absorption and emission processes are collectively referred to as “transitions” between stationary states and are directly related to the annihilation and creation, respectively, of a photon.

The wavelengths or energies from the hydrogen emission or absorption experiments were fit by an empirical equation known as the Rydberg equation, which gave the energy “states” of the hydrogen atom as

(1.19) Quantum Mechanical Foundations of Molecular Spectroscopy - изображение 38

In this equation, n is an integer (>0) “quantum” number, and R yis the Rydberg constant, ( R y= 2.179 × 10 −18J). This equation implies that the energy of the hydrogen atom cannot assume arbitrary energy values, but only “quantized” levels, E ( n ). This observation led to the ideas of electrons in stationary planetary orbits around the nucleus, which – however – was in contradiction with existing knowledge of electrodynamics, as discussed in the beginning of this chapter.

The energy level diagram described by Eq. (1.19)is depicted in Figure 1.4. Here, the sign convention is as follows. For n = ∞, the energy of interaction between nucleus and electron is zero, since the electron is no longer associated with the nucleus. The lowest energy state is given by n = 1, which corresponds to the H atom in its ground state that has a negative energy of 2.179 × 10 −18J.

Figure 14 Energy level diagram of the hydrogen atom Transitions between the - фото 39

Figure 1.4 Energy level diagram of the hydrogen atom. Transitions between the energy levels are indicated by vertical lines.

Equation (1.19)provided a background framework to explain the hydrogen atom emission spectrum. According to Eq. (1.19), the energy of a photon, or the energy difference of the atomic energy levels, between any two states n fand n ican be written as

(1.20) At this point an example may be appropriate to demonstrate how this - фото 40

At this point, an example may be appropriate to demonstrate how this empirically derived equation predicts the energy, wavelength, and wavenumber of light emitted by hydrogen atoms. This example also introduces a common problem, namely, that of units. Although there is an international agreement about what units (the système international, or SI units) are to be used to describe spectral transitions, the problem is that few people are using them. In this book, all efforts will be made to use SI units, or at least give the conversion to other units.

The sign conventions used here are similar to those in thermodynamics where a process with a final energy state lower than that of the initial state is called an “exothermic” process, where heat or energy is lost. In Example 1.2, the energy is lost as a photon and is called an emission transition. When describing an absorption process, the energy difference of the atom is negative, Δ E atom< 0, that is, the atom has gained energy (“endothermic” process in thermodynamics). Following the procedure outlined in Example 1.2would lead to a negative wavelength of the photon, which of course is physically meaningless, and one has to remember that the negative Δ E atomimplies the absorption of a photon.

Example 1.2Calculation of the energy, frequency, wavelength, and wavenumber of a photon emitted by a hydrogen atom undergoing a transition from n = 6 to n = 2.

Answer:

The energy difference between the two states of the hydrogen atom is given by

(E1.2.1) Using the value of the Rydberg constant given above R y 2179 10 18J the - фото 41

Using the value of the Rydberg constant given above, R y= 2.179 × 10 −18J, the energy difference is

(E1.2.2) Using Eq 112 Δ E E photon hν hcλ the frequency ν is found to be - фото 42

Using Eq. (1.12), Δ E = E photon = hν = hc/λ, the frequency ν is found to be

(E1.2.3) The wavelength of such a photon is given by Eq 17as E124 that is a - фото 43

The wavelength of such a photon is given by Eq. (1.7)as

(E1.2.4) that is a photon in the ultraviolet wavelength range Finally the wavenumber - фото 44

that is, a photon in the ultraviolet wavelength range. Finally, the wavenumber of this photon is

(E1.2.5) This is a case where the SI units are used infrequently and the results for - фото 45

This is a case where the SI units are used infrequently, and the results for the wavenumber are usually given by spectroscopists in units of cm −1, where 1 m −1= 10 −2cm −1. Accordingly, the results in Eq. E1.5 is written as

or about 24 380 cm 1 15 Molecular Spectroscopy Example 12in the previous - фото 46or about 24 380 cm −1.

1.5 Molecular Spectroscopy

Example 1.2in the previous section describes an emission process in atomic spectroscopy , a subject covered briefly in Chapter 9. Molecular spectroscopy is a branch of science in which the interactions of electromagnetic radiation and molecules are studied, where the molecules exist in quantized stationary energy states similar to those discussed in the previous section. However, these energy states may or may not be due to transitions of electrons into different energy levels, but due to vibrational, rotational, or spin energy levels. Thus, molecular spectroscopy often is classified by the wavelength ranges of the electromagnetic radiation (for example, microwave or infrared spectroscopies) or changes in energy levels of the molecular systems. This is summarized in Table 1.1, and the conversion of wavelengths and energies were discussed in Eqs. (1.11)– (1.15)and are summarized in Appendix 1.

Table 1.1 Photon energies and spectroscopic ranges a .

ν photon λ photon E photon[J] E photon[kJ/mol] E photon[m −1] Transition
Radio 750 MHz 0.4 m 5×10 −25 3×10 −4 2.5 NMR b
Microwave 3 GHz 10 cm 2×10 −24 0.001 10 EPR b
Microwave 30 GHz 1 cm 2×10 −23 0.012 100 Rotational
Infrared 3×10 13Hz 10 μm 2×10 −20 12 10 5 Vibrational
UV/visible 10 15 300 nm 6×10 −19 360 3×10 6 Electronic
X‐ray 10 18 0.3 nm 6×10 −16 3.6×10 5 3×10 9 X‐ray absorption

a) For energy conversions, see Appendix 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy»

Представляем Вашему вниманию похожие книги на «Quantum Mechanical Foundations of Molecular Spectroscopy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy»

Обсуждение, отзывы о книге «Quantum Mechanical Foundations of Molecular Spectroscopy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x