Dario Grana - Seismic Reservoir Modeling

Здесь есть возможность читать онлайн «Dario Grana - Seismic Reservoir Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Seismic Reservoir Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Seismic Reservoir Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. 
Seismic Reservoir Modeling: 
Theory, Examples and Algorithms

Seismic Reservoir Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Seismic Reservoir Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.51) and the maximization of Eq 151is equivalent to the minimization of Eq - фото 123

and the maximization of Eq. (1.51)is equivalent to the minimization of Eq. (1.48)(Tarantola 2005; Aster et al. 2018).

The L2‐norm is not the only misfit measure that can be used in inverse problems. For example, to avoid data points inconsistent with the chosen mathematical model (namely the outliers), the L1‐norm is generally preferable to the L2‐norm. However, from a mathematical point of view, the L2‐norm is preferable because of the analytical tractability of the associated Gaussian distribution.

In science and engineering applications, many inverse problems are not linear; therefore, the analytical solution of the inverse problem might not be available. For non‐linear inverse problems, several mathematical algorithms are available, including gradient‐based deterministic methods, such as Gauss–Newton, Levenberg–Marquardt, and conjugate gradient; Markov chain Monte Carlo methods, such as Metropolis, Metropolis Hastings, and Gibbs sampling; and stochastic optimization algorithms, such as simulated annealing, particle swarm optimization, and genetic algorithms. For detailed descriptions of these methods we refer the reader to Tarantola (2005), Sen and Stoffa (2013), and Aster et al. (2018).

1.7 Bayesian Inversion

From a probabilistic point of view, the solution of the inverse problem corresponds to estimating the conditional distribution md. The conditional probability P ( md) can be obtained using Bayes' theorem ( Eqs. 1.8and 1.25):

(1.52) where P d m is the likelihood function P m is the prior distribution - фото 124

where P ( dm) is the likelihood function, P ( m) is the prior distribution, and P ( d) is the marginal distribution. The probability P ( d) is a normalizing constant that guarantees that P ( md) is a valid PDF.

In geophysical inverse problems, we often assume that the physical relation fin Eq. () is linear and that the prior distribution P ( m) is Gaussian (Tarantola 2005). These two assumptions are not necessarily required to solve the Bayesian inverse problem, but under these assumptions, the inverse solution can be analytically derived. Indeed, in the Gaussian case, the solution to the Bayesian linear inverse problem is well‐known (Tarantola 2005). If we assume that: (i) the prior distribution of the model is Gaussian, i.e. Seismic Reservoir Modeling - изображение 125, where μ mis the prior mean and mis the prior covariance matrix; (ii) the forward operator fis linear with associated matrix F; and (iii) the measurement errors εare Gaussian Seismic Reservoir Modeling - изображение 126, with 0mean and covariance matrix ε, and they are independent of m; then, the posterior distribution mdis also Gaussian with conditional mean μ md 153 and conditional covariance matrix md - фото 127with conditional mean μ m∣d:

(1.53) and conditional covariance matrix md 154 For the proof we refer the - фото 128

and conditional covariance matrix m∣d:

(1.54) For the proof we refer the reader to Tarantola 2005 This result is - фото 129

For the proof, we refer the reader to Tarantola (2005). This result is extensively used in Chapter 5for seismic inversion problems.

Example 1.3

We illustrate the Bayesian approach for linear inverse problems in a geophysical application. We assume that the model variable of interest is S‐wave velocity V Sand that a measurement of P‐wave velocity V Pis available. The goal of this exercise is to predict the conditional probability of S‐wave velocity given P‐wave velocity.

We assume that S‐wave velocity is distributed according to a Gaussian distribution Seismic Reservoir Modeling - изображение 130with prior mean μ S= 2 km/s and prior standard deviation σ S= 0.25 km/s ( Seismic Reservoir Modeling - изображение 131). We assume that the forward operator linking P‐wave and S‐wave velocity is a linear model of the form:

Seismic Reservoir Modeling - изображение 132

We then assume that the measurement error is Gaussian distributed Seismic Reservoir Modeling - изображение 133with mean μ ε= 0 and standard deviation σ ε= 0.05 km/s ( Seismic Reservoir Modeling - изображение 134).

If the available measurement of P‐wave velocity is V P= 3.5 km/s, then the posterior distribution of S‐wave velocity given the P‐wave velocity measurement is Gaussian distributed Seismic Reservoir Modeling - изображение 135with mean μ S∣P:

and standard deviation σ SP If the available measurement of Pwave velocity - фото 136

and standard deviation σ S∣P:

If the available measurement of Pwave velocity is V P 45 kms then the mean - фото 137

If the available measurement of P‐wave velocity is V P= 4.5 km/s, then the mean μ S∣Pof the posterior distribution is:

and the standard deviation is σ SP 0025 kms The posterior standard - фото 138

and the standard deviation is σ S∣P= 0.025 km/s.

The posterior standard deviation does not depend on the measurement but only on the prior standard deviation of the model variable and the standard deviation of the error.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Seismic Reservoir Modeling»

Представляем Вашему вниманию похожие книги на «Seismic Reservoir Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Seismic Reservoir Modeling»

Обсуждение, отзывы о книге «Seismic Reservoir Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x