Dario Grana - Seismic Reservoir Modeling

Здесь есть возможность читать онлайн «Dario Grana - Seismic Reservoir Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Seismic Reservoir Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Seismic Reservoir Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. 
Seismic Reservoir Modeling: 
Theory, Examples and Algorithms

Seismic Reservoir Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Seismic Reservoir Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

If two random variables are independent, i.e. f X,Y( x , y ) = f X( x ) f Y( y ), then X and Y are uncorrelated. However, the opposite is not necessarily true. Indeed, the correlation coefficient is a measure of linear correlation; therefore, if two random variables are uncorrelated, then there is no linear relation between the two properties, but it does not necessarily mean that the two variables are independent. For example, if Y = X 2, and X takes positive and negative values, then the correlation coefficient is close to 0, but yet Y depends deterministically on X through the quadratic relation ( Figure 1.6), and the two variables are not independent.

Figure 16Examples of different correlations of the joint distribution of two - фото 63

Figure 1.6Examples of different correlations of the joint distribution of two random variables X and Y . The correlation coefficient ρ X,Yis 0.9 and −0.6 in the top plots and approximately 0 in the bottom plots.

1.4 Probability Distributions

Different probability mass and density functions can be used for discrete and continuous random variables, respectively. For parametric distributions, the function is completely defined by a limited number of parameters (e.g. mean and variance). In this section, we review the most common probability mass and density functions. Probability mass functions are commonly used in geoscience problems for discrete random variables such as facies or rock types, whereas PDFs are used for continuous properties such as porosity, fluid saturations, density, P‐wave and S‐wave velocity. Some applications in earth sciences include mixed discrete–continuous problems with both discrete and continuous random variables.

1.4.1 Bernoulli Distribution

The simplest probability distribution is the Bernoulli distribution and it is associated with a single experiment with only two possible outcomes. An example of this type of experiment is the toss of a coin. Let X be a random variable representing the experiment, then X is a random variable that takes only two outcomes, 0 and 1, where X = 1 means that a favorable event is observed, and X = 0 otherwise. We assume that the probability of the favorable event, generally called the probability of success, is a real number p such that 0 ≤ p ≤ 1. The probability mass function p X( x ) is then:

(1.29) Seismic Reservoir Modeling - изображение 64

The mean of the Bernoulli distribution is then μ X= p and the variance is Seismic Reservoir Modeling - изображение 65.

The Bernoulli distribution has several applications in earth sciences. In reservoir modeling, for example, we can use the Bernoulli distribution for the occurrence of a given facies or rock type. For instance, we define a successful event as finding a high‐porosity sand rather than impermeable shale. The probability of success is generally unknown and it depends on the overall proportions of the two facies.

1.4.2 Uniform Distribution

A common distribution for discrete and continuous properties is the uniform distribution on a given interval. According to a uniform distribution, a random variable is equally likely to take any value in the assigned interval. Hence, the PDF is constant within the interval, and 0 elsewhere. If a random variable X is distributed according to a uniform distribution U ([ a , b ]) in the interval [ a , b ], then its PDF f X( x ) can be written as:

(1.30) Seismic Reservoir Modeling - изображение 66

The mean μ Xof a uniform distribution in the interval [ a , b ] is:

(1.31) Seismic Reservoir Modeling - изображение 67

and it coincides with the median, whereas the variance Seismic Reservoir Modeling - изображение 68is:

(1.32) Seismic Reservoir Modeling - изображение 69

An example of uniform distribution in the interval [1, 3] is shown in Figure 1.7. The uniform distribution is sometimes called non‐informative because it does not provide any additional knowledge other than the interval boundaries.

1.4.3 Gaussian Distribution

Most of the random variables of interest in reservoir modeling are continuous. The most common PDF for continuous variables is the Gaussian distribution, commonly called normal distribution. We say that a random variable X is distributed according to a Gaussian distribution Seismic Reservoir Modeling - изображение 70with mean μ Xand variance if its PDF f X x can be written as 133 A Gaussian distribution - фото 71, if its PDF f X( x ) can be written as:

(1.33) A Gaussian distribution with 0 mean and variance equal to 1 is also called - фото 72

A Gaussian distribution with 0 mean and variance equal to 1 is also called standard Gaussian - фото 73with 0 mean and variance equal to 1 is also called standard Gaussian distribution (or normal distribution). The Gaussian distribution is symmetric and unimodal ( Figure 1.8) and can be used to describe a number of phenomena in nature. The Gaussian distribution is defined on the entire set of real numbers and it is always positive. For example, the standard Gaussian distribution in Figure 1.8is always greater than 0, but the probability of the random variable being greater than 3 or less than 3 is close to 0, hence negligible.

Figure 17Uniform probability density function in the interval 1 3 Figure - фото 74

Figure 1.7Uniform probability density function in the interval [1, 3].

Figure 18Standard Gaussian probability density function with 0 mean and - фото 75

Figure 1.8Standard Gaussian probability density function with 0 mean and variance equal to 1.

As shown in Eq. (1.15), in order to compute any probability associated with the random variable X , we must compute an integral. For a Gaussian distribution, the integral of Eq. (1.33)has no analytical form; therefore, we must use numerical tables of the cumulative density function of the standard Gaussian distribution (Papoulis and Pillai 2002). For example, if X is a random variable distributed according to a standard Gaussian distribution then we can compute the following probabilities P X 1 084 P X - фото 76, then we can compute the following probabilities P ( X ≤ 1) ≅ 0.84, P ( X ≤ 1.5) ≅ 0.932, P ( X ≤ 2) ≅ 0.977, using the numerical tables. Similarly, we obtain that P (−1 ≤ X ≤ 1) ≅ 0.68, P (−2 ≤ X ≤ 2) ≅ 0.954, and P (−3 ≤ X ≤ 3) ≅ 0.997.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Seismic Reservoir Modeling»

Представляем Вашему вниманию похожие книги на «Seismic Reservoir Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Seismic Reservoir Modeling»

Обсуждение, отзывы о книге «Seismic Reservoir Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x