Dario Grana - Seismic Reservoir Modeling

Здесь есть возможность читать онлайн «Dario Grana - Seismic Reservoir Modeling» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Seismic Reservoir Modeling: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Seismic Reservoir Modeling»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO₂ sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. 
Seismic Reservoir Modeling: 
Theory, Examples and Algorithms

Seismic Reservoir Modeling — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Seismic Reservoir Modeling», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To compute a probability associated with a non‐standard Gaussian distribution Seismic Reservoir Modeling - изображение 77with mean μ Yand variance картинка 78, we apply the transformation X = ( Yμ Y)/ σ Yand we use the numerical tables of the standard Gaussian distribution. Indeed, the random variable X is a standard Gaussian distribution with 0 mean and variance equal to 1, and For example if Y has a Gaussian distribution with mean μ Y 1 and variance - фото 79For example, if Y has a Gaussian distribution with mean μ Y= 1 and variance картинка 80, then we define a new random variable X = ( Y − 1)/2. The probability P ( Y ≤ 2) is then equal to the probability P ( X ≤ 0.5) ≅ 0.69. Similarly, P (−3 ≤ Y ≤ 3) = P (−2 ≤ X ≤ 1) ≅ 0.82.

In general, the probability that a Gaussian random variable X takes values in the interval ( μ X− σ X, μ X+ σ X) is approximately 0.68; in the interval ( μ X− 2 σ X, μ X+ 2 σ X) is approximately 0.95; and in the interval ( μ X− 3 σ X, μ X+ 3 σ X) is approximately 0.99. Therefore, there is a high probability that the values of the Gaussian random variable Seismic Reservoir Modeling - изображение 81are in the interval of length 6 σ Xcentered around the mean μ X, even though the tails of the distributions have non‐zero probability for values greater than μ X+ 3 σ Xor less than μ X− 3 σ X.

Because a Gaussian PDF takes positive values in the entire real domain, when using Gaussian distributions for bounded random variables, such as volumetric fractions, or positive random variables, such as velocities, one should truncate the distribution to avoid non‐physical outcomes or apply a suitable transformation (Papoulis and Pillai 2002), such as the normal score or logit transformations of the original variables.

1.4.4 Log‐Gaussian Distribution

We then introduce the log‐Gaussian distribution (or log‐normal distribution) that is strictly related to the Gaussian distribution. Log‐Gaussian distributions are commonly used for positive random variables. For example, suppose that we are interested in the probability distribution of P‐wave velocity. To avoid positive values of the PDF for negative (hence non‐physical) P‐wave velocity values, we can take the logarithm of P‐wave velocity and assume a Gaussian distribution in the logarithmic domain. In this case, the distribution of P‐wave velocity is said to be log‐Gaussian.

We say that a random variable Y is distributed according to a log‐Gaussian distribution with mean μ Yand variance if X log Y is distributed according to a - фото 82with mean μ Yand variance if X log Y is distributed according to a Gaussian distribution The PDF - фото 83, if X = log( Y ) is distributed according to a Gaussian distribution The PDF f Y y can be written as Figure 19LogGaussian probability - фото 84. The PDF f Y( y ) can be written as:

Figure 19LogGaussian probability density function associated with the - фото 85

Figure 1.9Log‐Gaussian probability density function associated with the standard Gaussian distribution in Figure 1.8.

(1.34) where μ Xand are the mean and the variance of the random variable in the - фото 86

where μ Xand картинка 87are the mean and the variance of the random variable in the logarithmic domain.

The mean μ Yand the variance картинка 88of the log‐Gaussian distribution are related to the mean μ Xand variance of the associated Gaussian distribution according to the following - фото 89of the associated Gaussian distribution, according to the following transformations:

(1.35) 136 137 138 - фото 90

(1.36) 137 138 Figure 19shows the logGaussi - фото 91

(1.37) 138 Figure 19shows the logGaussian distribution associated with the - фото 92

(1.38) Figure 19shows the logGaussian distribution associated with the standard - фото 93

Figure 1.9shows the log‐Gaussian distribution associated with the standard Gaussian distribution shown in Figure 18 A logGaussian distributed random variable takes only - фото 94shown in Figure 1.8.

A log‐Gaussian distributed random variable takes only positive real values. Its distribution is unimodal but it is not symmetric since the PDF is skewed toward 0. The skewness s of a log‐Gaussian distribution is always positive and is given by:

(1.39) For these reasons the logGaussian distribution is a convenient and useful - фото 95

For these reasons, the log‐Gaussian distribution is a convenient and useful model to describe unimodal positive random variables in earth sciences.

An example of application of log‐Gaussian distributions in seismic reservoir characterization can be found in Section 5.3, where we assume a multivariate log‐Gaussian distribution of elastic properties in the Bayesian linearized seismic inversion.

1.4.5 Gaussian Mixture Distribution

Gaussian and log‐Gaussian distributions are unimodal parametric distributions. However, many rock properties in the subsurface, for example porosity and permeability, are multimodal. Multimodal distributions can be described by non‐parametric distributions, but these distributions require a large amount of data to be estimated. In many applications, multimodal distributions can be approximated by Gaussian mixture distributions, i.e. linear combinations of Gaussian distributions.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Seismic Reservoir Modeling»

Представляем Вашему вниманию похожие книги на «Seismic Reservoir Modeling» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Seismic Reservoir Modeling»

Обсуждение, отзывы о книге «Seismic Reservoir Modeling» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x