Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie

Здесь есть возможность читать онлайн «Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantenmechanische Grundlagen der Molekülspektroskopie: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantenmechanische Grundlagen der Molekülspektroskopie»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Schlägt die Brücke zwischen Quantentheorie und Spektroskopie!<br> <br> Spektroskopie ist das Arbeitspferd zur Struktur- und Eigenschaftsaufklärung von Molekülen und Werkstoffen. Um die verschiedenen spektroskopischen Methoden verstehen, kompetent anwenden und die Ergebnisse interpretieren zu können, ist grundlegendes Wissen der Quantenmechanik erforderlich: Konzepte wie stationäre Zustände, erlaubte und verbotene Übergänge, Elektronenspin und Elektron-Elektron-, Elektron-Photon- und Elektron-Phonon-Wechselwirkung sind die Grundlagen jeglicher spektroskopischen Methode.<br> <br> Quantenmechanische Grundlagen der Molekülspektroskopie führt ein in die quantenmechanischen Grundlagen der Molekülspektroskopie, geschrieben vom Standpunkt eines erfahrenen Anwenders spektroskopischer Methoden. Das Lehrbuch vermittelt das notwendige Hintergrundwissen, um Spektroskopie zu verstehen: Energie-Eigenzustände, Übergänge zwischen diesen Zuständen, Auswahlregeln und Symmetrie. Zahlreiche Spektroskopiearten werden diskutiert, etwa Fluoreszenz-, Oberflächen-, Raman-, IR- und Spin-Spektroskopie.<br> <br> * Perfekte Balance: ausreichend Physik und Mathematik, um Spektroskopie zu verstehen, ohne die Leserinnen und Leser mit unnötigem Formalismus zu überfrachten<br> <br> * Relevantes Thema: spektroskopische Methoden werden in allen Bereichen der Chemie, Biophysik, Biologie und Materialwissenschaften angewandt<br> <br> * Auf die Bedürfnisse Studierender zugeschnitten: der Autor ist ein erfahrener Hochschullehrer, der auch schwierige Aspekte verständlich vermittelt<br> <br> * Hervorragende Didaktik: detaillierte Erklärungen und durchgerechnete Beispiele unterstützen das Verständnis; zahlreiche Aufgaben mit Lösungen im Anhang erleichtern das Selbststudium<br> <br> Geschrieben für Studierende der Chemie, Biochemie, Materialwissenschaften und Physik, bietet Quantenmechanische Grundlagen der Molekülspektroskopie umfassendes Lernmaterial zum Verständnis der Molekülspektroskopie. <br>

Quantenmechanische Grundlagen der Molekülspektroskopie — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantenmechanische Grundlagen der Molekülspektroskopie», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Gleichung (1.19)liefert eine Erklärung des Wasserstoffatomemissionsspektrums. Nach (1.19)kann die Energie eines Photons, oder die Energiedifferenz der Atomenergieniveaus, zwischen zwei beliebigen Zuständen n fund n ials

(1.20) Abb 13Teil des Emissionsspektrums des Wasserstoffatoms im sichtbaren - фото 26

Abb 13Teil des Emissionsspektrums des Wasserstoffatoms im sichtbaren - фото 27

Abb. 1.3Teil des Emissionsspektrums des Wasserstoffatoms im sichtbaren Spektralbereich, hier als Linienspektrum und als Emissionsspektrum dargestellt.

Abb 14Energieniveaudiagramm des Wasserstoffatoms Übergänge zwischen - фото 28

Abb. 1.4Energieniveaudiagramm des Wasserstoffatoms. Übergänge zwischen Energieniveaus sind durch vertikale Linien angedeutet.

geschrieben werden. An dieser Stelle kann ein Beispiel 1.2 angebracht sein, um zu demonstrieren, wie diese empirisch abgeleitete Gleichung die Energie, Wellenlänge und Wellenzahl des von Wasserstoffatomen emittierten Lichts vorhersagt. Dieses Beispiel führt auch ein allgemeines Problem ein, nämlich das von Einheiten. Obwohl es eine internationale Vereinbarung darüber gibt, welche Einheiten (das Système International d’unités oder SI-Einheiten) zur Beschreibung von spektralen Übergängen verwendet werden sollen, besteht das Problem darin, dass sie nur von wenigen Personen verwendet werden. In diesem Buch werden alle Anstrengungen unternommen, SI-Einheiten zu verwenden oder zumindest an die Umrechnung auf andere Einheiten zu erinnern.

Die hier verwendeten Vorzeichenkonventionen ähneln denen in der Thermodynamik, wo ein Prozess mit einem niedrigeren Endenergiezustand als dem des Anfangszustands als ,,exothermer“ Prozess bezeichnet wird, bei dem Wärme oder Energie verloren geht. In Beispiel 1.2 geht die Energie als Photon verloren und wird als Emissionsübergang bezeichnet. Bei der Beschreibung eines Absorptionsprozesses ist die Energiedifferenz des Atoms negativ, Δ E Atom< 0, d. h., das Atom hat Energie gewonnen (,,endothermer“ Prozess in der Thermodynamik). Wenn man dem gleichen Verfahren wie in Beispiel 1.2 folgt, würde dies zu einer negativen Wellenlänge des Photons führen, was natürlich physikalisch bedeutungslos ist, und man muss bedenken, dass das negative negative Δ E Atomdie Absorption eines Photons bedeutet.

Beispiel 1.2: Berechnung von Energie, Frequenz, Wellenlänge und Wellenzahl eines Photons, das von einem Wasserstoffatom emittiert wird, das einen Übergang von n = 6 nach n = 2 durchläuft.

Die Energiedifferenz zwischen den beiden Zuständen des Wasserstoffatoms ist durch

(B1.2-1) gegeben Unter Verwendung des oben angegebenen Wertes der RydbergKonstante Ry - фото 29

gegeben. Unter Verwendung des oben angegebenen Wertes der Rydberg-Konstante, Ry = 2,179 · 10 −18J, beträgt die Energiedifferenz

(B1.2-2) Mit 112 Δ E E Photon hν hcλ wird die Frequenz ν ermittelt B123 - фото 30

Mit (1.12), Δ E = E Photon= = hc/λ , wird die Frequenz ν ermittelt:

(B1.2-3) Die Wellenlänge eines solchen Photons ist durch 17gegeben B124 d h - фото 31

Die Wellenlänge eines solchen Photons ist durch (1.7)gegeben:

(B1.2-4) d h ein Photon im ultravioletten Wellenlängenbereich Schließlich ist die - фото 32

d h. ein Photon im ultravioletten Wellenlängenbereich. Schließlich ist die Wellenzahl dieses Photons

(B1.2-5) Dies ist ein Fall in dem die SIEinheiten selten verwendet werden Ergebnisse - фото 33

Dies ist ein Fall, in dem die SI-Einheiten selten verwendet werden. Ergebnisse für die Wellenzahl werden gewöhnlich von Spektroskopikern in Einheiten von cm −1angegeben, wobei 1m −1= 10 −2cm −1. Dementsprechend wird das Ergebnis in (B1.2-5)als oder ungefähr 24 380 cm 1angegeben 15 Molekülspektroskopie Beispiel 12 im - фото 34oder ungefähr 24 380 cm −1angegeben.

1.5 Molekülspektroskopie

Beispiel 1.2 im vorherigen Abschnitt beschreibt einen Emissionsprozess in der Atomspektroskopie , ein Thema, das in diesem Buch nur kurz behandelt wird ( Kap. 9). Die molekulare Spektroskopie ist ein Wissenschaftszweig, in dem die Wechselwirkungen von elektromagnetischer Strahlung und Molekülen untersucht werden, wobei die Moleküle in gequantelten, stationären Energiezuständen vorliegen, die denen, im vorherigen Abschnitt diskutierten ähnlich sind. Diese Energiezustände können entweder auf Übergänge von Elektronen in unterschiedliche Energieniveaus oder auf Schwingungs-, Rotations- oder Spinenergieniveaus zurückzuführen sein. Daher wird die Molekülspektroskopie häufig nach den Wellenlängenbereichen der elektromagnetischen Strahlung (beispielsweise Mikrowellen- oder Infrarotspektroskopie) oder nach Änderungen der Energieniveaus der molekularen Systeme klassifiziert. Dies ist in Tab. 1.1 zusammengefasst, und die Umwandlung von Wellenlängen und Energien wurde in (1.11)– (1.15)diskutiert.

In Tab. 1.1 stehen NMR und EPR für kernmagnetische bzw. elektronenparamagnetische Resonanzspektroskopie. Bei diesen beiden spektroskopischen Methoden hängt die Übergangsenergie eines Protonen- oder Elektronenspins von der angelegten Magnetfeldstärke ab. Alle in Tab. 1.1 aufgeführten Techniken können durch Absorptionsprozesse beschrieben werden, obwohl auch andere Beschreibungen, wie z. B. die Magnetisierung in der NMR, möglich sind. Wie aus Tab. 1.1 hervorgeht, liegen die Photonenenergien zwischen 10 −16und 10 −25J/Photon oder zwischen etwa 10 −4und 10 5kJ/(mol Photonen). Wenn man bedenkt, dass die Bindungsenergie einer typischen chemischen (Einfach-)Bindung etwa 250–400 kJ/mol beträgt, zeigt sich,dass ultraviolette Photonen genügend Energie haben, um chemische Bindungen aufzubrechen oder Moleküle zu ionisieren. In diesem Buch werden aber hauptsächlich energiearme Photonenwechselwirkungen diskutiert, die Übergänge in Spinzuständen, Rotations-, Vibrations- und elektronischen (vibronischen) Energieniveaus verursachen.

Tab. 1.1Photonenenergien und spektroskopische Bereiche a).

Wellenbereich νPhoton λPhoton EPhoton [J] EPhoton [kJ/mol] EPhoton [m−1] Übergänge
Radio 750 MHz 0,4m 5 · 10 −25 3 · 10 −4 2,5 NMR b)
Mikrowellen 3GHz 10cm 2 · 10 −24 0,001 10 EPR b)
Mikrowellen 30GHz 1 cm 2 · 10 −23 0,012 100 Rotationsanregung
Infrarot 3 · 10 13Hz 10 μm 2 · 10 −20 12 10 5 Schwingungsanregung
UV/Vis 10 15Hz 300 nm 6 · 10 −19 360 3 · 10 6 Elektronische Anregung
Röntgen 10 18Hz 0,3 nm 6 · 10 −16 3,6 · 10 5 3 · 10 9 Röntgenabsorption

a) Informationen zur Energieumrechnung finden Sie in Anhang A.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie»

Представляем Вашему вниманию похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie»

Обсуждение, отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x