Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie

Здесь есть возможность читать онлайн «Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantenmechanische Grundlagen der Molekülspektroskopie: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantenmechanische Grundlagen der Molekülspektroskopie»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Schlägt die Brücke zwischen Quantentheorie und Spektroskopie!<br> <br> Spektroskopie ist das Arbeitspferd zur Struktur- und Eigenschaftsaufklärung von Molekülen und Werkstoffen. Um die verschiedenen spektroskopischen Methoden verstehen, kompetent anwenden und die Ergebnisse interpretieren zu können, ist grundlegendes Wissen der Quantenmechanik erforderlich: Konzepte wie stationäre Zustände, erlaubte und verbotene Übergänge, Elektronenspin und Elektron-Elektron-, Elektron-Photon- und Elektron-Phonon-Wechselwirkung sind die Grundlagen jeglicher spektroskopischen Methode.<br> <br> Quantenmechanische Grundlagen der Molekülspektroskopie führt ein in die quantenmechanischen Grundlagen der Molekülspektroskopie, geschrieben vom Standpunkt eines erfahrenen Anwenders spektroskopischer Methoden. Das Lehrbuch vermittelt das notwendige Hintergrundwissen, um Spektroskopie zu verstehen: Energie-Eigenzustände, Übergänge zwischen diesen Zuständen, Auswahlregeln und Symmetrie. Zahlreiche Spektroskopiearten werden diskutiert, etwa Fluoreszenz-, Oberflächen-, Raman-, IR- und Spin-Spektroskopie.<br> <br> * Perfekte Balance: ausreichend Physik und Mathematik, um Spektroskopie zu verstehen, ohne die Leserinnen und Leser mit unnötigem Formalismus zu überfrachten<br> <br> * Relevantes Thema: spektroskopische Methoden werden in allen Bereichen der Chemie, Biophysik, Biologie und Materialwissenschaften angewandt<br> <br> * Auf die Bedürfnisse Studierender zugeschnitten: der Autor ist ein erfahrener Hochschullehrer, der auch schwierige Aspekte verständlich vermittelt<br> <br> * Hervorragende Didaktik: detaillierte Erklärungen und durchgerechnete Beispiele unterstützen das Verständnis; zahlreiche Aufgaben mit Lösungen im Anhang erleichtern das Selbststudium<br> <br> Geschrieben für Studierende der Chemie, Biochemie, Materialwissenschaften und Physik, bietet Quantenmechanische Grundlagen der Molekülspektroskopie umfassendes Lernmaterial zum Verständnis der Molekülspektroskopie. <br>

Quantenmechanische Grundlagen der Molekülspektroskopie — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantenmechanische Grundlagen der Molekülspektroskopie», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Die Welleneigenschaften von Photonen werden durch Beugungsexperimente manifestiert und durch die Maxwell-Gleichung zusammengefasst. Wie bei jeder Wellenausbreitung ist die Lichtgeschwindigkeit c durch die Gleichung

(1.11) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 14

definiert, wobei λ die Wellenlänge (ausgedrückt in m) und ν die Frequenz (ausgedrückt in Hz = s −1) der Welle ist. c hat einen Wert von c = 2,998 · 10 8m/s.

Die Größe картинка 15wird als die Wellenzahl der Strahlung (in Einheiten von m −1) bezeichnet, die angibt, wie viele Wellenzyklen pro Längeneinheit auftreten:

(1.12) Die kinetische Energie eines Photons ist durch 113 gegeben wobei - фото 16

Die (kinetische) Energie eines Photons ist durch

(1.13) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 17

gegeben, wobei Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 18die Winkelfrequenz, durch ω = 2 πν definiert sind.

Aus der klassischen Definition des Impulses

(1.14) folgt dass die Photonenmasse durch 115 gegeben ist Dabei soll man - фото 19

folgt, dass die Photonenmasse durch

(1.15) gegeben ist Dabei soll man beachten dass sich Photonen nur mit - фото 20

gegeben ist. Dabei soll man beachten, dass sich Photonen nur mit Lichtgeschwindigkeit bewegen können, und dass die Photonenmasse nur bei der Lichtgeschwindigkeit c definiert ist. Daher hat ein Photon die Ruhemasse m 0gleich null.

Materieteilchen haben dagegen eine von null verschiedene Ruhemasse, die üblicherweise als ihre Masse bezeichnet wird. Diese Masse ist jedoch eine Funktion der Geschwindigkeit und sollte als bezeichnet werden, definiert durch

(1.16) Beispiel 11 Berechnung der Masse eines Elektrons das sich mit 990 der - фото 21

Beispiel 1.1: Berechnung der Masse eines Elektrons, das sich mit 99,0 % der Lichtgeschwindigkeit bewegt. (Solche Geschwindigkeiten können in einem Synchrotron leicht erreicht werden.)

Nach (1.16)ist die Masse eines Elektrons bei ν = 0,99 c

(B1.1-1) Das Elektron hat bei 99 der Lichtgeschwindigkeit eine Masse von etwa dem - фото 22

Das Elektron hat bei 99 % der Lichtgeschwindigkeit eine Masse von etwa dem Siebenfachen seiner Ruhemasse.

Gleichung (1.16)zeigt, dass die Masse aller Materieteilchen unendlich wird, wenn sie auf Lichtgeschwindigkeit beschleunigt wird. Ihre kinetische Energie bei der Geschwindigkeit ν (weit entfernt von der Lichtgeschwindigkeit) ist durch den klassischen Ausdruck

(1.17) gegeben Die Diskussion der letzten Absätze zeigt dass zu Beginn des 20 - фото 23

gegeben. Die Diskussion der letzten Absätze zeigt, dass zu Beginn des 20. Jahrhunderts experimentelle Beweise angehäuft wurden, die auf die Notwendigkeit hinwiesen, einige Aspekte der klassischen Physik neu zu definieren. Das nächste dieser Experimente, das zur Formulierung der Quantenmechanik führte, war die Beobachtung von ,,Spektrallinien“ in den Absorptions- und Emissionsspektren des Wasserstoffatoms.

1.4 Absorptions- und Emissionsspektren von Wasserstoffatomen

In den letzten Jahrzehnten des 19. und des ersten Jahrzehnts des 20. Jahrhunderts stellten mehrere Forscher fest, dass Wasserstoffatome, die in Gasentladungslampen erzeugt wurden, Licht in diskreten Farben und nicht in einem breiten Lichtkontinuum (wie in Abb. 1.2a) emittieren. Dies ist in Abb. 1.3 für den ultravioletten und sichtbaren Spektralbereich schematisch dargestellt. Diese Beobachtungen gingen den in den vorangegangenen beiden Abschnitten diskutierten Bemühungen voraus und können daher als am einflussreichsten für die Entwicklung der Verbindung zwischen Spektroskopie und Quantenmechanik angesehen werden.

Diese Experimente zeigten, dass das Wasserstoffatom in bestimmten ,,Energiezuständen“ oder ,,stationären Zuständen“ existieren kann. Diese Zustände können Prozesse durchlaufen, die als ,,Übergänge“ bezeichnet werden. Wenn das Atom einen solchen Übergang von einem höheren oder stärker angeregten Zustand in einen niedrigeren oder weniger angeregten Zustand vollzieht, wird die Energiedifferenz zwischen den Zuständen als Photon mit einer Energie emittiert, die der Energiedifferenz zwischen den beiden Zuständen entspricht:

(1.18) Hier bezeichnet der Index f den endgültigen und der Index i und den - фото 24

Hier bezeichnet der Index f den endgültigen und der Index i und den anfänglichen (Energie-)Zustand des Atoms (oder Moleküls). Ein solcher Vorgang wird als ,,Emission“ eines Photons bezeichnet. Ebenso ist ein Absorptionsprozess ein Prozess, bei dem das Atom einen Übergang von einem Zustand niedrigerer zu einem Zustand höherer Energie durchläuft, wobei die Energiedifferenz durch ein Photon bereitgestellt wird, das in dem Prozess vernichtet wird. Absorptions- und Emissionsprozesse werden zusammenfassend als Übergänge zwischen stationären Zuständen bezeichnet und stehen in direktem Zusammenhang mit der Vernichtung bzw. Erzeugung eines Photons.

Die Wellenlängen oder Energien der Wasserstoffemissions- oder -absorptionsexperimente wurden durch eine empirische Gleichung angepasst, die als Rydberg-Gleichung bekannt ist und die Energiezustände des Wasserstoffatoms als

(1.19) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 25

beschreibt. In dieser Gleichung ist n eine ganzzahlige „Quantenzahl“ (> 0) und Ry ist die Rydberg-Konstante ( Ry = 2,179 · 10 −18J). Diese Gleichung impliziert, dass die Energie des Wasserstoffatoms keine willkürlichen Energiewerte annehmen kann, sondern nur ,,gequantelte“ Energieniveaus, E ( n ). Diese Beobachtung führte zu den Vorstellungen von Elektronen in stationären, planetarischen Bahnen um den Kern, die jedoch im Widerspruch zu den zu Beginn dieses Kapitels erörterten Kenntnissen der Elektrodynamik standen.

Das Energieniveaudiagramm nach (1.19)ist in Abb. 1.4 dargestellt. Hier ist die Vorzeichenkonvention wie folgt. Wir nehmen an, dass der niedrigste Energie- oder Grundzustand des Wasserstoffatoms bei n = 1 liegt. Für n = ∞ ist die Energie des Atoms null, da das Elektron nicht mehr mit dem Kern assoziiert ist; daher ist ihre Wechselwirkungsenergie null.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie»

Представляем Вашему вниманию похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie»

Обсуждение, отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x