Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie

Здесь есть возможность читать онлайн «Max Diem - Quantenmechanische Grundlagen der Molekülspektroskopie» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantenmechanische Grundlagen der Molekülspektroskopie: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantenmechanische Grundlagen der Molekülspektroskopie»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Schlägt die Brücke zwischen Quantentheorie und Spektroskopie!<br> <br> Spektroskopie ist das Arbeitspferd zur Struktur- und Eigenschaftsaufklärung von Molekülen und Werkstoffen. Um die verschiedenen spektroskopischen Methoden verstehen, kompetent anwenden und die Ergebnisse interpretieren zu können, ist grundlegendes Wissen der Quantenmechanik erforderlich: Konzepte wie stationäre Zustände, erlaubte und verbotene Übergänge, Elektronenspin und Elektron-Elektron-, Elektron-Photon- und Elektron-Phonon-Wechselwirkung sind die Grundlagen jeglicher spektroskopischen Methode.<br> <br> Quantenmechanische Grundlagen der Molekülspektroskopie führt ein in die quantenmechanischen Grundlagen der Molekülspektroskopie, geschrieben vom Standpunkt eines erfahrenen Anwenders spektroskopischer Methoden. Das Lehrbuch vermittelt das notwendige Hintergrundwissen, um Spektroskopie zu verstehen: Energie-Eigenzustände, Übergänge zwischen diesen Zuständen, Auswahlregeln und Symmetrie. Zahlreiche Spektroskopiearten werden diskutiert, etwa Fluoreszenz-, Oberflächen-, Raman-, IR- und Spin-Spektroskopie.<br> <br> * Perfekte Balance: ausreichend Physik und Mathematik, um Spektroskopie zu verstehen, ohne die Leserinnen und Leser mit unnötigem Formalismus zu überfrachten<br> <br> * Relevantes Thema: spektroskopische Methoden werden in allen Bereichen der Chemie, Biophysik, Biologie und Materialwissenschaften angewandt<br> <br> * Auf die Bedürfnisse Studierender zugeschnitten: der Autor ist ein erfahrener Hochschullehrer, der auch schwierige Aspekte verständlich vermittelt<br> <br> * Hervorragende Didaktik: detaillierte Erklärungen und durchgerechnete Beispiele unterstützen das Verständnis; zahlreiche Aufgaben mit Lösungen im Anhang erleichtern das Selbststudium<br> <br> Geschrieben für Studierende der Chemie, Biochemie, Materialwissenschaften und Physik, bietet Quantenmechanische Grundlagen der Molekülspektroskopie umfassendes Lernmaterial zum Verständnis der Molekülspektroskopie. <br>

Quantenmechanische Grundlagen der Molekülspektroskopie — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantenmechanische Grundlagen der Molekülspektroskopie», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.40) veranschaulicht werden Dieses Integral kann unter Verwendung der - фото 126

veranschaulicht werden. Dieses Integral kann unter Verwendung der Integralbeziehung

(2.41) errechnet werden Für zwei benachbarte Wellenfunktionen beispielsweise m 1 - фото 127

errechnet werden. Für zwei benachbarte Wellenfunktionen, beispielsweise m = 1 und n = 2 oder m = 2 und n = 3, enthält der Zähler des ersten Terms in (2.41)die Sinusfunktion von ungeraden Vielfachen von π , während der Zähler des zweiten Terms die Sinusfunktion von geraden Vielfachen von π enthält. Da die Sinusfunktion von ungeraden und geraden Vielfachen von n null ist, ist das Integral in (2.41)immer null. Dieses Argument gilt für jeden Fall, in dem nm ist.

Dies kann auch grafisch dargestellt werden, wie in Abb. 2.3b für die ersten beiden TiK-Wellenfunktionen für n = 1 (Kurve a) und m = 2 (Kurve b) gezeigt ist. Das Produkt der beiden Funktionen ergibt Kurve c. Die schattierten Bereiche der Kurve c oberhalb und unterhalb der Abszisse repräsentieren das Integral in (2.40)für n = 1 und m = 2 und sind gleich; daher ist die Fläche unter der Produktkurve c null.

Abbildung 2.2 zeigt auch, dass die Wellenfunktionen für die Zustände mit einer Quantenzahl größer als eins Knotenpunkte oder Punkte ohne Amplitude haben. Dies ist aus dem klassischen Wellenverhalten beispielsweise für eine schwingende Saite bekannt. Die quadrierte Amplitude der Wellenfunktion des TiK bedeutet die Wahrscheinlichkeit, das Elektron aufzufinden; deshalb stellen diese Knotenpunkte Bereiche dar, in denen das Elektron nicht gefunden wird.

Beispiel 2.3

1 a) Wie groß ist die Wahrscheinlichkeit P, ein TiK mit n =1 im mittleren Drittel des Kastens zu finden?

2 Was ist P für den gleichen Bereich für ein klassisches Teilchen?

Lösung:

1 a) Die Wahrscheinlichkeit P, ein quantenmechanisches Teilchen oder eine quantenmechanische Welle zu finden, ist durch das Quadrat der Amplitude der Wellenfunktion gegeben, somit:(B2.3-1) Das Integral über die sin2-Funktion wird durch die Beziehung(B2.3-2) erhalten. Damit ist die Wahrscheinlichkeit(B2.3-3)

2 b) Ein klassisches Teilchen würde mit gleicher Wahrscheinlichkeit irgendwo in dem Kasten gefunden werden; somit ist die Wahrscheinlichkeit, es im mittleren Drittel zu finden, nur 1/3. Bitte beachten Sie, dass bei höheren Werten von n die Wahrscheinlichkeit abnimmt, dass das Elektron im mittleren Drittel gefunden wird.

2.4 Das Teilchen in einem zweidimensionalen Kasten, das ungebundene Teilchen und das Teilchen in einem Kasten mit endlichen Energiebarrieren

Teilchen im zweidimensionalen (2-D)-Kasten

Die im vorherigen Abschnitt abgeleiteten Prinzipien können leicht auf einen zweidimensionalen Fall erweitert werden. Hier ist ein Elektron in einem Kasten mit den Dimensionen Lx in der x -Richtung und Ly - in der y -Richtung eingeschlossen. Die potenzielle Energie ist null innerhalb und unendlich außerhalb des Kastens:

(2.42) Der HamiltonOperator für dieses System ist 243 und die gesamte - фото 128

Der Hamilton-Operator für dieses System ist

(2.43) und die gesamte Wellenfunktion ψx y kann als 244 geschrieben werden wobei - фото 129

und die gesamte Wellenfunktion ψx y kann als

(2.44) geschrieben werden wobei A wie zuvor eine Amplitudenkonstante - фото 130

geschrieben werden, wobei A wie zuvor eine Amplitudenkonstante (Normierungskonstante) ist. Die Gesamtenergie des Systems beträgt

(2.45) Für ein quadratisches Kästchen mit Lx Ly L vereinfacht sich der Ausdruck - фото 131

Für ein quadratisches Kästchen mit Lx = Ly = L vereinfacht sich der Ausdruck für die Energie zu:

(2.46) Diese Wellenfunktionen können z B für nx 2 und ny 1 und nx 1 und ny 2 - фото 132

Diese Wellenfunktionen können z. B. für nx = 2 und ny = 1 und nx = 1 und ny = 2 wie in Abb. 2.4 dargestellt werden. Diese Wellenfunktionen repräsentieren eine stehende Welle auf einer quadratischen Trommel. Die Energieeigenwerte für diese beiden Fälle sind gleich:

(2.47) Wenn zwei oder mehr Energieeigenwerte für unterschiedliche Kombinationen von - фото 133

Wenn zwei oder mehr Energieeigenwerte für unterschiedliche Kombinationen von Quantenzahlen gleich sind, werden diese Energiezustände als entartet bezeichnet. Hier erhält man für nx = 2 und ny = 1 und nx = 1 und ny = 2 die gleichen Energieeigenwerte; folglich sind E 21und E 12entartet. Dies ist ein häufiges Vorkommen in der Quantenmechanik, wie wir später in der Diskussion des Wasserstoffatoms ( Kap. 7) sehen werden, wo alle drei 2p-Orbitale, alle fünf 3d-Orbitale und alle sieben 4f-Orbitale entartet sind.

Abb 24Wellenfunktionen für ein TiK in einem zweidimensionalen Kasten a nx - фото 134

Abb. 2.4Wellenfunktionen für ein TiK in einem zweidimensionalen Kasten (a) nx = 1 und ny = 2(b) nx = 2 und ny = 1 (Quelle: [2]).

Das ungebundene Teilchen

Als Nächstes wird der Fall eines Systems ohne Einschränkung der Randbedingungen (ein ungebundenes Teilchen) diskutiert. Diese Diskussion beginnt mit demselben Hamilton-Operator, der zuvor verwendet wurde:

(2.23) Wenn diese Differenzialgleichung ohne die bisher verwendeten Randbedingungen - фото 135

Wenn diese Differenzialgleichung ohne die bisher verwendeten Randbedingungen

(2.29) gelöst wird stellen die neuen Lösungen eine Teilchenwelle dar die sich - фото 136

gelöst wird, stellen die neuen Lösungen eine Teilchenwelle dar, die sich entlang der positiven oder negativen x -Richtung bewegt. Die allgemeinste Lösung der Differenzialgleichung (2.23)ist

(2.48) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 137

wobei b eine Konstante ist.

Die zweite Ableitung von (2.48)ist durch

(2.49) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 138

gegeben, wobei

(2.50) Quantenmechanische Grundlagen der Molekülspektroskopie - изображение 139

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie»

Представляем Вашему вниманию похожие книги на «Quantenmechanische Grundlagen der Molekülspektroskopie» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie»

Обсуждение, отзывы о книге «Quantenmechanische Grundlagen der Molekülspektroskopie» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x