Fundamentals of Terahertz Devices and Applications

Здесь есть возможность читать онлайн «Fundamentals of Terahertz Devices and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Terahertz Devices and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Terahertz Devices and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An authoritative and comprehensive guide to the devices and applications of Terahertz technology
Fundamentals of Terahertz Devices and Applications

Fundamentals of Terahertz Devices and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Terahertz Devices and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

15 15 Lubecke, V.M., Mizuno, K., and Rebeiz, G.M. (1998). Micromachining for terahertz applications. IEEE Transactions on Microwave Theory and Techniques 46 (11): 1821–1831.

16 16 Lee, C., Chattopadhyay, G., Decrossas, E. et al. (2015). Terahertz antenna arrays with silicon micromachined‐based microlens antenna and corrugated horns. International Workshop on Antenna Technology (iWAT), 70–73.

17 17 Chattopadhyay, G., Kuo, C.‐L., Day, P. et al. (2007). Planar antenna arrays for cmb polarization detection. Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW‐THz. Joint 32nd International Conference on, 2007, 184–185.

18 18 Iacono, A., Freni, A., Neto, A., and Gerini, G. (2011). In‐line x‐slot element focal plane array of kinetic inductance detectors. Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on, 2011, 3316–3320.

19 19 Bueno, J., Murugesan, V., Karatsu, K. et al. (2018). Ultrasensitive kilo‐pixel imaging array of photon noise‐limited kinetic inductance detectors over an octave of bandwidth for THz astronomy. Low Temperature Physics 193: 96. https://doi.org/10.1007/s10909‐018‐1962‐8.

20 20 Lee, S.‐K., Kim, M.‐G., Jo, K.‐W. et al. (2008). A glass reflowed microlens array on a Si substrate with rectangular through‐holes. Journal of Optics A: Pure and Applied Optics 10 (4): 044003.

21 21 Zmuidzinas, J. and LeDuc, H.G. (1992). Quasi‐optical slot antenna SIS mixers. IEEE Transactions on Microwave Theory and Techniques 40: 1797–1804.

22 22 Filipovic, S., Gearhart, S., and Rebeiz, G.M. (1993). Double‐slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Transactions on Microwave Theory and Techniques 41 (10): 1738–1749.

23 23 Neto, A., Bruni, S., Gerini, G., and Sabbadini, M. (2005). The leaky lens: a broad‐band fixed‐beam leaky‐wave antenna. IEEE Transactions on Antennas and Propagation 53 (10): 3240–3246.

24 24 Llombart, N., Dabironezare, S.O., Carluccio, G. et al. (2018). Reception power pattern of distributed absorbers in focal plane arrays: a fourier optics analysis. IEEE Transactions on Antennas and Propagation 66 (11): 5990–6002.

25 25 Llombart, N., Chattopadhyay, G., Skalare, A., and Mehdi, I. (2011). Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide. IEEE Transactions on Antennas and Propagation 59 (6): 2160–2168.

26 26 Alonso‐delPino, M., Reck, T., Jung‐Kubiak, C. et al. (2017). Development of silicon micromachined microlens antennas at 1.9 THz. IEEE Transactions on Terahertz Science and Technology 7 (2): 191–198.

27 27 Rutledge, D.B., Neikirk, D.P., and Kasilingam, D.P. (1983). Integrated circuit antennas. In: Infrared and Millimeter‐Waves, vol. 10 (ed. K.J. Button), 1–90. New York: Academic Press.

28 28 Rebeiz, G.M. (1992). Millimeter‐wave and terahertz integrated circuit antenna. Proceedings of the IEEE 80 (11): 1748–1770.

29 29 Moussessian, A., Wanke, M.C., Li, Y. et al. (1998). A terahertz grid frequency doubler. IEEE Transactions on Microwave Theory and Techniques 46 (11): 1976–1981.

30 30 Rebeiz, G., Regehr, W., Rutledge, D. et al. (1987). Submillimeter‐wave antennas an thin membranes. Antennas and Propagation Society International Symposium, 1987, 1194–1197.

31 31 Kominami, M., Pozar, D., and Schaubert, D. (1985). Dipole and slot elements and arrays on semi‐infinite substrates. IEEE Transactions on Antennas and Propagation 33 (6): 600–607.

32 32 Carluccio, G., Albani, M., and Neto, A. (2012). An iterative physical optics algorithm for the analysis and design of dielectric lens antennas. 2012 IEEE International Symposium on Antennas and Propagation and USNC‐URSI National Radio Science Meeting, Chicago, Illinois, USA (8–14 July 2012).

33 33 Alonso‐DelPino, M., Llombart, N., Chattopadhyay, G. et al. (2013). Design guidelines for a terahertz silicon micro‐lens antenna. IEEE Antennas and Wireless Propagation Letters 12: 84–87.

34 34 Neto, A., Maci, S., and De Maagt, P.J.I. (1998). Reflections inside an elliptical dielectric lens antenna. IEE Proceedings – Microwaves, Antennas and Propagation 145 (3): 243–247.

35 35 Gatesman, A.J., Waldman, J., Ji, M. et al. (2000). An anti‐reflection coating for silicon optics at terahertz frequencies. IEEE Microwave and Guided Wave Letters 10 (7): 264–266.

36 36 Nitta, T., Sekiguchi, S., Sekimoto, Y. et al. (2014). Anti‐reflection coating for cryogenic silicon and alumina lenses in millimeter‐wave bands. Journal of Low Temperature Physics 176 (5): 677–683. https://doi.org/10.1007/s10909‐013‐1059‐3.

37 37 Busse, L.E., Florea, C.M., Frantz, J.A. et al. (2014). Anti‐reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers. Optical Materials Express 4 (12): 2504–2515. https://doi.org/10.1364/OME.4.002504.

38 38 Jackson, D.R., Oliner, A.A., and Ip, A. (1993). Leaky‐wave propagation and radiation for a narrow‐beam multiple‐layer dielectric structure. IEEE Transactions on Antennas and Propagation 41 (3): 344–348.

39 39 Lee, Y., Yeo, J., Mittra, R., and Park, W. (2005). Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters. IEEE Transactions on Antennas and Propagation 53 (1): 224–235.

40 40 Guerin, N., Enoch, S., Tayeb, G. et al. (2006). A metallic Fabry‐Perot directive antenna. IEEE Transactions on Antennas and Propagation 54 (1): 220–224.

41 41 Foroozesh, A. and Shafai, L. (2010). Investigation into the effects of the patch‐type FSS superstrate on the high‐gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation 58 (2): 258–270.

42 42 Sarabandi, K. and Behdad, N. (2007). A frequency selective surface with miniaturized elements. IEEE Transactions on Antennas and Propagation 55 (5): 1239–1245.

43 43 Llombart, N., Neto, A., Gerini, G. et al. (2008). Impact of mutual coupling in leaky wave enhanced imaging arrays. IEEE Transactions on Antennas and Propagation 56 (4): 1201–1206.

44 44 Neto, A., Llombart, N., Baselmans, J.J.A. et al. (2014). Demonstration of the leaky lens antenna at submillimeter wavelengths. IEEE Transactions on Terahertz Science and Technology 4 (1): 26–32.

45 45 Campo, M.A., Blanco, D., Carluccio, G. et al. (2018). Circularly polarized lens antenna for Tbps wireless communications. 2018 48th European Microwave Conference (EuMC), Madrid, 1147–1150.

46 46 Neto, A. and Llombart, N. (2006). Wideband localization of the dominant leaky wave poles in dielectric covered antennas. IEEE Antennas and Wireless Propagation Letters 5: 549–551.

47 47 Llombart, N., Lee, C., Alonso‐delPino, M. et al. (2013). Silicon micromachined lens antenna for THz integrated heterodyne arrays. IEEE Transactions on Terahertz Science and Technology 3 (5): 515–523.

48 48 Alonso‐delPino, M., Jung‐Kubiak, C., Reck, T. et al. (2019). Beam scanning of silicon lens antennas using integrated piezomotors at submillimeter wavelengths. IEEE Transactions on Terahertz Science and Technology 9 (1): 47–54.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Terahertz Devices and Applications»

Представляем Вашему вниманию похожие книги на «Fundamentals of Terahertz Devices and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Terahertz Devices and Applications»

Обсуждение, отзывы о книге «Fundamentals of Terahertz Devices and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x